Papers
Topics
Authors
Recent
Search
2000 character limit reached

Classification of generalised higher-order Einstein-Maxwell Lagrangians

Published 22 Dec 2023 in gr-qc and hep-th | (2312.14814v2)

Abstract: We classify all higher-order generalised Einstein-Maxwell Lagrangians that include terms linear in the curvature tensor and quadratic in the derivatives of the electromagnetic field strength tensor. Using redundancies due to the Bianchi identities, dimensionally dependent identities and boundary terms, we show that a general Lagrangian of this form can always be reduced to a linear combination of only 21 terms, with coefficients that are arbitrary functions of the two scalar invariants derived from the field strength. We give an explicit choice of basis where these 21 terms include 3 terms linear in the Riemann tensor and 18 terms quadratic in the derivatives of the field strength.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10 (1974) 363–384.
  2. G. W. Horndeski, “Conservation of Charge and the Einstein-Maxwell Field Equations,” J. Math. Phys. 17 (1976) 1980–1987.
  3. D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski: Evading the Ostrogradski instability,” Journal of Cosmology and Astroparticle Physics 2016 (Feb., 2016) 034–034, 1510.06930.
  4. D. Langlois and K. Noui, “Hamiltonian analysis of higher derivative scalar-tensor theories,” JCAP 1607 (2016), no. 07 016, 1512.06820.
  5. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Healthy theories beyond Horndeski,” Phys. Rev. Lett. 114 (2015), no. 21 211101, 1404.6495.
  6. J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, “Exploring gravitational theories beyond Horndeski,” JCAP 02 (2015) 018, 1408.1952.
  7. J. B. Achour, D. Langlois, and K. Noui, “Degenerate higher order scalar-tensor theories beyond Horndeski and disformal transformations,” Physical Review D 93 (June, 2016) 124005, 1602.08398.
  8. J. B. Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui, and G. Tasinato, “Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order,” Journal of High Energy Physics 2016 (Dec., 2016) 100, 1608.08135.
  9. David Langlois, “Dark Energy and Modified Gravity in Degenerate Higher-Order Scalar-Tensor (DHOST) theories: A review,” International Journal of Modern Physics D 28 (Apr., 2019) 1942006, 1811.06271.
  10. T. Kobayashi, “Horndeski theory and beyond: A review,” Reports on Progress in Physics 82 (July, 2019) 086901.
  11. L. Heisenberg, “Generalization of the Proca Action,” JCAP 05 (2014) 015, 1402.7026.
  12. E. Allys, P. Peter, and Y. Rodriguez, “Generalized Proca action for an Abelian vector field,” JCAP 02 (2016) 004, 1511.03101.
  13. J. Beltran Jimenez and L. Heisenberg, “Derivative self-interactions for a massive vector field,” Phys. Lett. B 757 (2016) 405–411, 1602.03410.
  14. A. E. Gumrukcuoglu and R. Namba, “Role of matter in gravitation: going beyond the Einstein-Maxwell theory,” Phys. Rev. D 100 (2019) 124064, 1907.12292.
  15. A. De Felice and A. Naruko, “On metric transformations with a U⁢(1)𝑈1U(1)italic_U ( 1 ) gauge field,” Phys. Rev. D 101 (2020), no. 8 084044, 1911.10960.
  16. C. Deffayet, A. E. Gümrükçüoğlu, S. Mukohyama, and Y. Wang, “A no-go theorem for generalized vector Galileons on flat spacetime,” JHEP 04 (2014) 082, 1312.6690.
  17. F. Bopp, “Eine lineare theorie des elektrons,” Annalen der Physik 430 (1940), no. 5 345–384.
  18. B. Podolsky, “A Generalized Electrodynamics Part I-Non-Quantum,” Phys. Rev. 62 (1942) 68–71.
  19. F. Bopp, “Lineare theorie des elektrons. ii,” Annalen der Physik 434 (1943), no. 7-8 573–608.
  20. B. Podolsky and C. Kikuchi, “A Generalized Electrodynamics Part II-Quantum,” Phys. Rev. 65 (1944) 228–235.
  21. H. W. Lee, P. Y. Pac, and H. K. Shin, “Derivative expansions in quantum electrodynamics,” Phys. Rev. D 40 (1989) 4202–4205.
  22. D. Cangemi, E. D’Hoker, and G. V. Dunne, “Derivative expansion of the effective action and vacuum instability for QED in (2+1)-dimensions,” Phys. Rev. D 51 (1995) R2513–R2516, hep-th/9409113.
  23. V. P. Gusynin and I. A. Shovkovy, “Derivative expansion for the one loop effective Lagrangian in QED,” Can. J. Phys. 74 (1996) 282–289, hep-ph/9509383.
  24. V. P. Gusynin and I. A. Shovkovy, “Derivative expansion of the effective action for QED in (2+1)-dimensions and (3+1)-dimensions,” J. Math. Phys. 40 (1999) 5406–5439, hep-th/9804143.
  25. J. Navarro-Salas and S. Pla, “(ℱ,𝒢)ℱ𝒢(\mathcal{F},\mathcal{G})( caligraphic_F , caligraphic_G )-summed form of the QED effective action,” Phys. Rev. D 103 (2021), no. 8 L081702, 2011.09743.
  26. F. Karbstein, “Derivative corrections to the Heisenberg-Euler effective action,” JHEP 09 (2021) 070, 2108.02068.
  27. I. T. Drummond and S. J. Hathrell, “QED Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons,” Phys. Rev. D 22 (1980) 343.
  28. F. Bastianelli, U. Nucamendi, C. Schubert, and V. M. Villanueva, “Photon-graviton mixing in an electromagnetic field,” J. Phys. A 41 (2008) 164048, 0711.0992.
  29. F. Bastianelli, J. M. Davila, and C. Schubert, “Gravitational corrections to the Euler-Heisenberg Lagrangian,” JHEP 03 (2009) 086, 0812.4849.
  30. C. de Rham and A. J. Tolley, “Causality in curved spacetimes: The speed of light and gravity,” Phys. Rev. D 102 (2020), no. 8 084048, 2007.01847.
  31. D. Ejlli and V. R. Thandlam, “Graviton-photon mixing,” Phys. Rev. D 99 (2019), no. 4 044022, 1807.00171.
  32. D. Ejlli, “Graviton-photon mixing. Exact solution in a constant magnetic field,” JHEP 06 (2020) 029, 2004.02714.
  33. S. B. Edgar and A. Hoglund, “Dimensionally dependent tensor identities by double antisymmetrization,” J. Math. Phys. 43 (2002) 659–677, gr-qc/0105066.
  34. B. Knorr, “The derivative expansion in asymptotically safe quantum gravity: general setup and quartic order,” SciPost Phys. Core 4 (2021) 020, 2104.11336.
Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.