Framization of Schur--Weyl duality and Yokonuma--Hecke type algebras
Abstract: We study framizations of algebras through the idea of Schur--Weyl duality. We provide a general setting in which framizations of algebras such as the Yokonuma--Hecke algebra naturally appear and we obtain this way a Schur--Weyl duality for many examples of these algebras which were introduced in the study of knots and links. We thereby provide an interpretation of these algebras from the point of view of representations of quantum groups. In this approach the usual braid groups is replaced by the framed braid groups. This gives a natural procedure to construct framizations of algebras and we discuss in particular a new framized version of the Birman--Murakami--Wenzl algebra. The general setting is also extended to encompass the situation where the usual braid group is replaced by the so-called tied braids algebra, and this allows to collect in our approach even more examples of algebras introduced in the knots and links setting.
- F. Aicardi and J. Juyumaya. Tied links. J. Knot Theory Ramifications, 25(9):1641001, 28, 2016.
- F. Aicardi and J. Juyumaya. An algebra involving braids and ties. arXiv e-prints, 2017, 1709.03740.
- F. Aicardi and J. Juyumaya. Kauffman type invariants for tied links. Math. Z., 289(1-2):567–591, 2018.
- D. Arcis and J. Espinoza. Tied–boxed algebras. arXiv e-prints, Dec. 2023, 2312.04844.
- D. Arcis and J. Juyumaya. Tied monoids. Semigroup Forum, 103(2):356–394, 2021.
- M. Chlouveraki. From the framisation of the Temperley–Lieb algebra to the James polynomial: an algebraic approach. In Knots, low-dimensional topology and applications, volume 284 of Springer Proc. Math. Stat., pages 247–276. Springer, Cham, 2019.
- Identifying the invariants for classical knots and links from the Yokonuma–Hecke algebras. Int. Math. Res. Not. IMRN, (1):214–286, 2020.
- M. Chlouveraki and G. Pouchin. Representation theory and an isomorphism theorem for the framisation of the Temperley–Lieb algebra. Math. Z., 285(3-4):1357–1380, 2017.
- M. Chlouveraki and L. Poulain d’Andecy. Representation theory of the Yokonuma–Hecke algebra. Adv. Math., 259:134–172, 2014.
- M. Chlouveraki and L. Poulain d’Andecy. Markov traces on affine and cyclotomic Yokonuma–Hecke algebras. Int. Math. Res. Not. IMRN, (14):4167–4228, 2016.
- V. G. Drinfel’d. Almost cocommutative Hopf algebras. Algebra i Analiz, 1(2):30–46, 1989.
- J. Espinoza and S. Ryom-Hansen. Cell structures for the Yokonuma-Hecke algebra and the algebra of braids and ties. J. Pure Appl. Algebra, 222(11):3675–3720, 2018.
- A framization of the Hecke algebra of type b. J. Pure Appl. Algebra, 222(4):778–806, 2018.
- D. Goundaroulis. A survey on Temperley–Lieb-type quotients from the Yokonuma–Hecke algebras. In Algebraic modeling of topological and computational structures and applications, volume 219 of Springer Proc. Math. Stat., pages 37–55. Springer, Cham, 2017.
- Framization of the Temperley–Lieb algebra. Math. Res. Lett., 24(2):299–345, 2017.
- N. Jacon and L. Poulain d’Andecy. An isomorphism theorem for Yokonuma–Hecke algebras and applications to link invariants. Math. Z., 283(1-2):301–338, 2016.
- N. Jacon and L. Poulain d’Andecy. Clifford theory for Yokonuma–Hecke algebras and deformation of complex reflection groups. J. Lond. Math. Soc. (2), 96(3):501–523, 2017.
- M. Jimbo. A q𝑞qitalic_q-analogue of U(𝔤𝔩(N+1))𝑈𝔤𝔩𝑁1U(\mathfrak{gl}(N+1))italic_U ( fraktur_g fraktur_l ( italic_N + 1 ) ), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys., 11(3):247–252, 1986.
- J. Juyumaya. Markov trace on the Yokonuma–Hecke algebra. J. Knot Theory Ramifications, 13(1):25–39, 2004.
- J. Juyumaya. A Partition Temperley–Lieb Algebra. arXiv e-prints, Apr. 2013, 1304.5158.
- J. Juyumaya and S. Lambropoulou. Modular framization of the BMW algebra. arXiv e-prints, July 2010, 1007.0092.
- J. Juyumaya and S. Lambropoulou. An adelic extension of the Jones polynomial. In The mathematics of knots, volume 1 of Contrib. Math. Comput. Sci., pages 125–142. Springer, Heidelberg, 2011.
- A. Klimyk and K. Schmüdgen. Quantum groups and their representations. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997.
- A. Lacabanne and P. Vaz. Schur–Weyl duality, Verma modules, and row quotients of Ariki–Koike algebras. Pacific J. Math., 311(1):113–133, 2021.
- Quantum wreath products and Schur–Weyl duality I. arXiv e-prints, Apr. 2023, 2304.14181.
- Strongly multiplicity free modules for Lie algebras and quantum groups. J. Algebra, 306(1):138–174, 2006.
- P. Martin and H. Saleur. The blob algebra and the periodic Temperley–Lieb algebra. Lett. Math. Phys., 30(3):189–206, 1994.
- P. P. Martin and D. Woodcock. Generalized blob algebras and alcove geometry. LMS J. Comput. Math., 6:249–296, 2003.
- V. Mazorchuk and C. Stroppel. G(ℓ,k,d)𝐺ℓ𝑘𝑑G(\ell,k,d)italic_G ( roman_ℓ , italic_k , italic_d )-modules via groupoids. J. Algebraic Combin., 43(1):11–32, 2016.
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Published electronically at http://oeis.org.
- R. Orellana and A. Ram. Affine braids, Markov traces and the category 𝒪𝒪\mathcal{O}caligraphic_O. In Algebraic groups and homogeneous spaces, volume 19 of Tata Inst. Fund. Res. Stud. Math., pages 423–473. Tata Inst. Fund. Res., Mumbai, 2007.
- L. Poulain d’Andecy. Invariants for links from classical and affine Yokonuma–Hecke algebras. In Algebraic modeling of topological and computational structures and applications, volume 219 of Springer Proc. Math. Stat., pages 77–95. Springer, Cham, 2017.
- L. Poulain d’Andecy and E. Wagner. The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras. Proc. Roy. Soc. Edinburgh Sect. A, 148(6):1269–1278, 2018.
- L. Poulain d’Andecy and M. Zaimi. Fused Hecke algebra and one-boundary algebras. arXiv e-prints, June 2023, 2306.10937.
- N. Y. Reshetikhin. Quantized universal enveloping algebras, the Yang–Baxter equation and invariants of links, I. Technical report, Akad. Nauk St. Petersburg. Inst. Yarn. Math., St. Petersburg, 1987.
- S. Ryom-Hansen. On the representation theory of an algebra of braids and ties. J. Algebraic Combin., 33(1):57–79, 2011.
- S. Ryom-Hansen. On the annihilator ideal in the bt𝑏𝑡btitalic_b italic_t-algebra of tensor space. J. Pure Appl. Algebra, 226(8):Paper No. 107028, 24, 2022.
- M. Sakamoto and T. Shoji. Schur-Weyl reciprocity for Ariki–Koike algebras. J. Algebra, 221(1):293–314, 1999.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.