Non co-adapted couplings of Brownian motions on subRiemannian manifolds (2312.14512v1)
Abstract: In this article we continue the study of couplings of subelliptic Brownian motions on the subRiemannian manifolds SU (2) and SL(2, R). Similar to the case of the Heisenberg group, this subelliptic Brownian motion can be considered as a Brownian motion on the sphere (resp. the hyperbolic plane) together with its swept area modulo 4$\pi$. Using this structure, we construct an explicit non co-adapted successful coupling on SU (2) and, under strong conditions on the starting points, on SL(2, R) too. This strategy uses couplings of Brownian bridges, taking inspiration into the work from Banerjee, Gordina and Mariano [3] on the Heisenberg group. We prove that the coupling rate associated to these constructions is exponentially decreasing in time and proportionally to the subRiemannian distance between the starting points. We also give some gradient inequalities that can be deduced from the estimation of this coupling rate.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.