Concatenating Binomial Codes with the Planar Code (2312.14390v2)
Abstract: Rotation symmetric bosonic codes are an attractive encoding for qubits into oscillator degrees of freedom, particularly in superconducting qubit experiments. While these codes can tolerate considerable loss and dephasing, they will need to be combined with higher level codes to achieve large-scale devices. We investigate concatenating these codes with the planar code in a measurement-based scheme for fault-tolerant quantum computation. We focus on binomial codes as the base level encoding, and estimate break-even points for such encodings under loss for various types of measurement protocol. These codes are more resistant to photon loss errors, but require both higher mean photon numbers and higher phase resolution for gate operations and measurements. We find that it is necessary to implement adaptive phase measurements, maximum likelihood quantum state inference, and weighted minimum weight decoding to obtain good performance for a planar code using binomial code qubits.
- I. L. Chuang, D. W. Leung, and Y. Yamamoto, Bosonic quantum codes for amplitude damping, Phys. Rev. A 56, 1114 (1997).
- D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64, 012310 (2001).
- P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Physical Review A 59, 2631 (1999a).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2–30 (2003).
- K. Noh and C. Chamberland, Fault-tolerant bosonic quantum error correction with the surface–gottesman-kitaev-preskill code, Physical Review A 101, 10.1103/physreva.101.012316 (2020).
- K. Noh, C. Chamberland, and F. G. Brandão, Low-overhead fault-tolerant quantum error correction with the surface-gkp code, PRX Quantum 3, 010315 (2022).
- P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping, Phys. Rev. A 59, 2631 (1999b).
- A. L. Grimsmo, J. Combes, and B. Q. Baragiola, Quantum computing with rotation-symmetric bosonic codes, Physical Review X 10, 10.1103/physrevx.10.011058 (2020).
- R. Raussendorf, D. Browne, and H. Briegel, The one-way quantum computer–a non-network model of quantum computation, Journal of Modern Optics 49, 1299 (2002).
- B. J. Brown and S. Roberts, Universal fault-tolerant measurement-based quantum computation, Physical Review Research 2, 10.1103/physrevresearch.2.033305 (2020).
- H. M. Wiseman and R. B. Killip, Adaptive single-shot phase measurements: The full quantum theory, Physical Review A 57, 2169–2185 (1998).
- H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge university press, 2009).
- R. Raussendorf, J. Harrington, and K. Goyal, Topological fault-tolerance in cluster state quantum computation, New Journal of Physics 9, 199–199 (2007).
- R. Raussendorf and J. Harrington, Fault-tolerant quantum computation with high threshold in two dimensions, Physical Review Letters 98, 10.1103/physrevlett.98.190504 (2007).
- J. Claes, J. E. Bourassa, and S. Puri, Tailored cluster states with high threshold under biased noise, npj Quantum Information 9, 10.1038/s41534-023-00677-w (2023).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- A. S. Darmawan and D. Poulin, Tensor-network simulations of the surface code under realistic noise, Physical Review Letters 119, 040502 (2017).
- H. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields, Vol. 2008 (2007).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.