Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Differential cohomology (encyclopedia article) (2312.14338v1)

Published 21 Dec 2023 in math.AT, math-ph, and math.MP

Abstract: We give an overview of differential cohomology from the point of view of algebraic topology. This includes a survey of several different definitions of differential cohomology groups, a discussion of differential characteristic classes, an introduction to differential generalized cohomology theory, and some applications in physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (120)
  1. Differential cohomology: Categories, characteristic classes, and connections. 2021. https://arxiv.org/abs/2109.12250.
  2. Spectral asymmetry and Riemannian geometry. III. Math. Proc. Cambridge Philos. Soc., 79(1):71–99, 1976.
  3. Differential characters, volume 2112 of Lecture Notes in Mathematics. Springer, Cham, 2014.
  4. A. A. Beĭlinson. Higher regulators and values of L𝐿Litalic_L-functions. In Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, pages 181–238. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984.
  5. Alain Berthomieu. A version of smooth KK\mathrm{K}roman_K-theory adapted to the total Chern class. J. K-Theory, 6(2):197–230, 2010. https://arxiv.org/abs/0806.4728.
  6. Differential function spectra, the differential Becker-Gottlieb transfer, and applications to differential algebraic K𝐾Kitalic_K-theory. Mem. Amer. Math. Soc., 269(1316):v+177, 2021. https://arxiv.org/abs/1306.0247.
  7. Spencer Bloch. Applications of the dilogarithm function in algebraic K𝐾Kitalic_K-theory and algebraic geometry. In Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pages 103–114. Kinokuniya Book Store, Tokyo, 1978.
  8. The geometry of degree-four characteristic classes and of line bundles on loop spaces. I. Duke Math. J., 75(3):603–638, 1994.
  9. Čech cocycles for characteristic classes. Comm. Math. Phys., 178(1):225–236, 1996.
  10. Holographic action for the self-dual field. 2006. https://arxiv.org/abs/hep-th/0605038.
  11. Type II actions from 11-dimensional Chern–Simons theories. 2006. https://arxiv.org/abs/hep-th/0611020.
  12. Differential cohomology theories as sheaves of spectra. J. Homotopy Relat. Struct., 11(1):1–66, 2016. https://arxiv.org/abs/1311.3188.
  13. R. Bott. On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups. Advances in Math., 11:289–303, 1973.
  14. Jean-Luc Brylinski. Loop spaces, characteristic classes and geometric quantization, volume 107 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1993.
  15. Jean-Luc Brylinski. Comparison of the Beilinson-Chern classes with the Chern-Cheeger-Simons classes. In Advances in geometry, volume 172 of Progr. Math., pages 95–105. Birkhäuser Boston, Boston, MA, 1999.
  16. Jean-Luc Brylinski. Geometric construction of Quillen line bundles. In Advances in geometry, volume 172 of Progr. Math., pages 107–146. Birkhäuser Boston, Boston, MA, 1999.
  17. Smooth KK\mathrm{K}roman_K-theory. Astérisque, (328):45–135 (2010), 2009.
  18. Differential K-theory: a survey. In Global differential geometry, volume 17 of Springer Proc. Math., pages 303–357. Springer, Heidelberg, 2012. https://arxiv.org/abs/1011.6663.
  19. On the de Rham theory of certain classifying spaces. Advances in Math., 20(1):43–56, 1976.
  20. Lift of fractional D-brane charge to equivariant cohomotopy theory. J. Geom. Phys., 161:104034, 20, 2021. https://arxiv.org/abs/1812.09679.
  21. Landweber exact formal group laws and smooth cohomology theories. Algebr. Geom. Topol., 9(3):1751–1790, 2009. https://arxiv.org/abs/0711.1134.
  22. Regulators and cycle maps in higher-dimensional differential algebraic K𝐾Kitalic_K-theory. Adv. Math., 285:1853–1969, 2015. https://arxiv.org/abs/1209.6451.
  23. Multiplicative differential algebraic K𝐾Kitalic_K-theory and applications. Ann. K-Theory, 1(3):227–258, 2016. https://arxiv.org/abs/1311.1421.
  24. Ulrich Bunke. Chern classes on differential K-theory. Pacific J. Math., 247(2):313–322, 2010. https://arxiv.org/abs/0907.2504.
  25. Ulrich Bunke. Differential cohomology. https://arxiv.org/abs/1208.3961, August 2013.
  26. Ulrich Bunke. Foliated manifolds, algebraic K𝐾Kitalic_K-theory, and a secondary invariant. Münster J. Math., 11(1):157–209, 2018. https://arxiv.org/abs/1507.06404.
  27. Ulrich Bunke. A regulator for smooth manifolds and an index theorem. J. Noncommut. Geom., 12(4):1293–1340, 2018. https://arxiv.org/abs/1407.1379.
  28. Severin Bunk. The ℝℝ\mathbb{R}blackboard_R-local homotopy theory of smooth spaces. J. Homotopy Relat. Struct., 17(4):593–650, 2022. https://arxiv.org/abs/2007.06039.
  29. Characteristic forms and geometric invariants. Ann. of Math. (2), 99:48–69, 1974.
  30. Differential characters and geometric invariants. In Geometry and topology (College Park, Md., 1983/84), volume 1167 of Lecture Notes in Math., pages 50–80. Springer, Berlin, 1985.
  31. Matthew T. Cushman. A Geometric Model for Real and Complex Differential K-Theory. ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–City University of New York.
  32. Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math., (40):5–57, 1971.
  33. The M-theory 3-form and E8subscript𝐸8E_{8}italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT gauge theory. In Elliptic cohomology, volume 342 of London Math. Soc. Lecture Note Ser., pages 44–88. Cambridge Univ. Press, Cambridge, 2007. https://arxiv.org/abs/hep-th/0312069.
  34. Orientifold précis. In Mathematical foundations of quantum field theory and perturbative string theory, volume 83 of Proc. Sympos. Pure Math., pages 159–172. Amer. Math. Soc., Providence, RI, 2011. https://arxiv.org/abs/0906.0795.
  35. Spin structures and superstrings. In Surveys in differential geometry. Volume XV. Perspectives in mathematics and physics, volume 15 of Surv. Differ. Geom., pages 99–130. Int. Press, Somerville, MA, 2011. https://arxiv.org/abs/1007.4581.
  36. Differential cohomology and topological actions in physics. 2020. https://arxiv.org/abs/2011.05768.
  37. Regulators and characteristic classes of flat bundles. In The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), volume 24 of CRM Proc. Lecture Notes, pages 47–92. Amer. Math. Soc., Providence, RI, 2000. https://arxiv.org/abs/alg-geom/9202023.
  38. Constructing the Virasoro Groups Using Differential Cohomology. Int. Math. Res. Not. IMRN, (21):18537–18574, 2023. https://arxiv.org/abs/2112.10837.
  39. T-duality for orientifolds and twisted KR-theory. Lett. Math. Phys., 104(11):1333–1364, 2014. https://arxiv.org/abs/1306.1779.
  40. Daniel Dugger. Universal homotopy theories. Adv. Math., 164(1):144–176, 2001. https://arxiv.org/abs/math/0007070.
  41. On Ramond-Ramond fields and K𝐾Kitalic_K-theory. J. High Energy Phys., (5):Paper 44, 14, 2000. https://arxiv.org/abs/hep-th/0002027.
  42. Chern-Weil forms and abstract homotopy theory. Bull. Amer. Math. Soc. (N.S.), 50(3):431–468, 2013. https://arxiv.org/abs/1301.5959.
  43. Reflection positivity and invertible topological phases. Geom. Topol., 25(3):1165–1330, 2021. https://arxiv.org/abs/1604.06527.
  44. Heisenberg groups and noncommutative fluxes. Ann. Physics, 322(1):236–285, 2007. https://arxiv.org/abs/hep-th/0605200.
  45. The uncertainty of fluxes. Comm. Math. Phys., 271(1):247–274, 2007. https://arxiv.org/abs/hep-th/0605198.
  46. 3d spectral networks and classical Chern-Simons theory. 2022. https://arxiv.org/abs/2208.07420.
  47. The dilogarithm and abelian Chern-Simons. J. Differential Geom., 123(2):241–266, 2023. https://arxiv.org/abs/2006.12565.
  48. Fabio Ferrari Ruffino. Differential KK\mathrm{K}roman_K-characters and D-branes. In String-Math 2014, volume 93 of Proc. Sympos. Pure Math., pages 151–165. Amer. Math. Soc., Providence, RI, 2016. https://arxiv.org/abs/1603.05323.
  49. Daniel S. Freed. Dirac charge quantization and generalized differential cohomology. In Surveys in differential geometry, volume 7 of Surv. Differ. Geom., pages 129–194. Int. Press, Somerville, MA, 2000. https://arxiv.org/abs/hep-th/0011220.
  50. Daniel S. Freed. K𝐾Kitalic_K-theory in quantum field theory. In Current developments in mathematics, 2001, pages 41–87. Int. Press, Somerville, MA, 2002. https://arxiv.org/abs/math-ph/0206031.
  51. Daniel S. Freed. Pions and generalized cohomology. J. Differential Geom., 80(1):45–77, 2008. https://arxiv.org/abs/hep-th/0607134.
  52. Daniel S. Freed. Lectures on field theory and topology, volume 133 of CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 2019. Published for the Conference Board of the Mathematical Sciences.
  53. Twisted differential KK\mathrm{K}roman_K-characters and D-branes. Nuclear Phys. B, 960:115169, 72, 2020. https://arxiv.org/abs/2009.04223.
  54. Čech cocycles for differential characteristic classes: an ∞\infty∞-Lie theoretic construction. Adv. Theor. Math. Phys., 16(1):149–250, 2012. https://arxiv.org/abs/1011.4735.
  55. The Wess–Zumino–Witten term of the M5-brane and differential cohomotopy. J. Math. Phys., 56(10):102301, 10, 2015. https://arxiv.org/abs/1506.07557.
  56. Twisted cohomotopy implies M-theory anomaly cancellation on 8-manifolds. Comm. Math. Phys., 377(3):1961–2025, 2020. https://arxiv.org/abs/1904.10207.
  57. Twisted cohomotopy implies level quantization of the full 6d Wess–Zumino term of the M5-brane. Comm. Math. Phys., 384(1):403–432, 2021. https://arxiv.org/abs/1906.07417.
  58. Twisted cohomotopy implies twisted string structure on M5-branes. J. Math. Phys., 62(4):Paper No. 042301, 16, 2021. https://arxiv.org/abs/2002.11093.
  59. Twistorial cohomotopy implies Green-Schwarz anomaly cancellation. Rev. Math. Phys., 34(5):Paper No. 2250013, 42, 2022. https://arxiv.org/abs/2008.08544.
  60. Symmetry protected topological phases and generalized cohomology. Journal of High Energy Physics, 2019, 2019. https://arxiv.org/abs/1712.07950.
  61. A Hilbert bundle description of differential KK\mathrm{K}roman_K-theory. Adv. Math., 328:661–712, 2018. https://arxiv.org/abs/1512.07185.
  62. Daniel Grady. Deformation classes of invertible field theories and the freed–hopkins conjecture. 2023. https://arxiv.org/abs/2310.15866.
  63. Characteristic classes for algebraic vector bundles with Hermitian metric. II. Ann. of Math. (2), 131(2):205–238, 1990.
  64. Parametrized geometric cobordism and smooth Thom stacks. 2017. https://arxiv.org/abs/1709.00686.
  65. Massey products in differential cohomology via stacks. J. Homotopy Relat. Struct., 13(1):169–223, 2018. https://arxiv.org/abs/1510.06366.
  66. Primary operations in differential cohomology. Adv. Math., 335:519–562, 2018. https://arxiv.org/abs/1604.05988.
  67. Twisted differential KO-theory. 2019. https://arxiv.org/abs/1905.09085.
  68. Differential cohomotopy versus differential cohomology for M-theory and differential lifts of Postnikov towers. J. Geom. Phys., 165:Paper No. 104203, 24, 2021. https://arxiv.org/abs/2001.07640.
  69. Differential KOKO\mathrm{KO}roman_KO-theory: constructions, computations, and applications. Adv. Math., 384:Paper No. 107671, 117, 2021. https://arxiv.org/abs/1809.07059.
  70. Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ𝜎\sigmaitalic_σ models and a special group supercohomology theory. Phys. Rev. B, 90:115141, Sep 2014. https://arxiv.org/abs/1201.2648.
  71. Differential K⁢O𝐾𝑂KOitalic_K italic_O-theory via gradations and mass terms. Adv. Theor. Math. Phys., 27(2):381–481, 2023. https://arxiv.org/abs/2111.01377.
  72. From sparks to grundles—differential characters. Comm. Anal. Geom., 14(1):25–58, 2006. https://arxiv.org/abs/math/0306193.
  73. A geometric model for odd differential KK\mathrm{K}roman_K-theory. Differential Geom. Appl., 40:123–158, 2015. https://arxiv.org/abs/1309.2834.
  74. Man-Ho Ho. On differential characteristic classes. J. Aust. Math. Soc., 99(1):30–47, 2015. https://arxiv.org/abs/1311.3927.
  75. Hodge filtered complex bordism. J. Topol., 8(1):147–183, 2015.
  76. Geometric Hodge filtered complex cobordism. Adv. Math., 431:Paper No. 109244, 58, 2023. https://arxiv.org/abs/2210.13259.
  77. Geometric pushforward in Hodge filtered complex cobordism and secondary invariants. 2023. https://arxiv.org/abs/2303.15899.
  78. Quadratic functions in geometry, topology, and M-theory. J. Differential Geom., 70(3):329–452, 2005. https://arxiv.org/abs/math/0211216.
  79. Kevin Robert Klonoff. An index theorem in differential K-theory. ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–The University of Texas at Austin.
  80. D-brane couplings and generalised geometry. 2013. https://arxiv.org/abs/1301.7238.
  81. On the cokernel of the Thom morphism for compact Lie groups. 2023. https://arxiv.org/abs/2306.16874.
  82. Fermionic SPT phases in higher dimensions and bosonization. Journal of High Energy Physics, 2017(10):80, Oct 2017. https://arxiv.org/abs/1701.08264.
  83. T𝑇Titalic_T-duality and differential KK\mathrm{K}roman_K-theory. Commun. Contemp. Math., 16(2):1350014, 27, 2014. https://arxiv.org/abs/0912.2516.
  84. John Lott. Secondary analytic indices. In Regulators in analysis, geometry and number theory, volume 171 of Progr. Math., pages 231–293. Birkhäuser Boston, Boston, MA, 2000. https://arxiv.org/abs/dg-ga/9503005.
  85. A superbundle description of differential K-theory. Axioms, 12(1), 2023.
  86. 𝐀1superscript𝐀1{\bf A}^{1}bold_A start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90):45–143 (2001), 1999.
  87. Byungdo Park. A smooth variant of Hopkins-Singer differential KK\mathrm{K}roman_K-theory. New York J. Math., 23:655–670, 2017. https://arxiv.org/abs/1607.08686.
  88. Noncommutative differential K𝐾Kitalic_K-theory. J. Geom. Phys., 174:Paper No. 104446, 40, 2022. https://arxiv.org/abs/2106.12073.
  89. Gereon Quick. An Abel-Jacobi invariant for cobordant cycles. Doc. Math., 21:1645–1668, 2016. https://arxiv.org/abs/1503.08449.
  90. Gereon Quick. Unstable splittings in Hodge filtered Brown-Peterson cohomology. J. Homotopy Relat. Struct., 14(2):349–369, 2019. https://arxiv.org/abs/1610.07912.
  91. David Michael Roberts. Topological sectors for heterotic M5-brane charges under Hypothesis H. J. High Energy Phys., (6):052, 16, 2020. https://arxiv.org/abs/2003.09832.
  92. Hisham Sati. Geometric and topological structures related to M-branes. In Superstrings, geometry, topology, and C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras, volume 81 of Proc. Sympos. Pure Math., pages 181–236. Amer. Math. Soc., Providence, RI, 2010. https://arxiv.org/abs/1001.5020.
  93. Hisham Sati. Geometric and topological structures related to M-branes II: Twisted string and stringc𝑐{}^{c}start_FLOATSUPERSCRIPT italic_c end_FLOATSUPERSCRIPT structures. J. Aust. Math. Soc., 90(1):93–108, 2011. https://arxiv.org/abs/1007.5419.
  94. Hisham Sati. Framed M-branes, corners, and topological invariants. J. Math. Phys., 59(6):062304, 25, 2018. https://arxiv.org/abs/1310.1060.
  95. Hisham Sati. Six-dimensional gauge theories and (twisted) generalized cohomology. 2019. https://arxiv.org/abs/1908.08517.
  96. Vincent S. Schlegel. The caloron correspondence and odd differential K-theory. 2013. https://arxiv.org/abs/1309.2601.
  97. Urs Schreiber. Differential cohomology in a cohesive infinity-topos. 2013. https://arxiv.org/abs/1310.7930.
  98. Christoph Schrade. Adams Operations in Differential Algebraic K-theory. PhD thesis, Universität Regensburg, 2018. https://epub.uni-regensburg.de/37768/1/ThesisFinal2.pdf.
  99. Eric Schlarmann. Smooth classifying spaces for differential KK\mathrm{K}roman_K-theory. 2019. https://arxiv.org/abs/1905.03059.
  100. H. Shulman. On Characteristic Classes. PhD thesis, The University of California at Berkeley, 1972.
  101. Christophe Soulé. Connexions et classes caractéristiques de Beilinson. In Algebraic K𝐾Kitalic_K-theory and algebraic number theory (Honolulu, HI, 1987), volume 83 of Contemp. Math., pages 349–376. Amer. Math. Soc., Providence, RI, 1989.
  102. Axiomatic characterization of ordinary differential cohomology. J. Topol., 1(1):45–56, 2008. https://arxiv.org/abs/math/0701077.
  103. Structured vector bundles define differential K𝐾Kitalic_K-theory. In Quanta of maths, volume 11 of Clay Math. Proc., pages 579–599. Amer. Math. Soc., Providence, RI, 2010. https://arxiv.org/abs/0810.4935.
  104. The character map in equivariant twistorial cohomotopy implies the Green-Schwarz mechanism with heterotic M5-branes. 2020. https://arxiv.org/abs/2011.06533.
  105. Equivariant cohomotopy implies orientifold tadpole cancellation. J. Geom. Phys., 156:103775, 40, 2020. https://arxiv.org/abs/1909.12277.
  106. Twisted cohomotopy implies M5-brane anomaly cancellation. Lett. Math. Phys., 111(5):Paper No. 120, 25, 2021. https://arxiv.org/abs/2002.07737.
  107. Differential cohomotopy implies intersecting brane observables via configuration spaces and chord diagrams. Adv. Theor. Math. Phys., 26(4):957–1051, 2022. https://arxiv.org/abs/1912.10425.
  108. Anyonic defect branes and conformal blocks in twisted equivariant differential (TED) K-theory. Rev. Math. Phys., 35(6):Paper No. 2350009, 65, 2023. https://arxiv.org/abs/2203.11838.
  109. Flux quantization on phase space. 2023. https://arxiv.org/abs/2312.12517.
  110. M/F-theory as M⁢f𝑀𝑓Mfitalic_M italic_f-theory. Rev. Math. Phys., 35(10):Paper No. 2350028, 2023. https://arxiv.org/abs/2103.01877.
  111. Twisted differential string and fivebrane structures. Comm. Math. Phys., 315(1):169–213, 2012. https://arxiv.org/abs/0910.4001.
  112. Andrew Jay Stimpson. Axioms for Differential Cohomology. ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–State University of New York at Stony Brook.
  113. Ramond-Ramond fields, fractional branes and orbifold differential KK\mathrm{K}roman_K-theory. Comm. Math. Phys., 294(3):647–702, 2010. https://arxiv.org/abs/0710.2773.
  114. An elementary differential extension of odd K-theory. J. K-Theory, 12(2):331–361, 2013. https://arxiv.org/abs/1211.4477.
  115. Differential KK\mathrm{K}roman_K-theory as equivalence classes of maps to Grassmannians and unitary groups. New York J. Math., 22:527–581, 2016. https://arxiv.org/abs/1507.01770.
  116. Konrad Waldorf. Multiplicative bundle gerbes with connection. Differential Geom. Appl., 28(3):313–340, 2010. https://arxiv.org/abs/0804.4835.
  117. Construction and classification of symmetry-protected topological phases in interacting fermion systems. Phys. Rev. X, 10:031055, Sep 2020. https://arxiv.org/abs/1811.00536.
  118. Mayuko Yamashita. Differential models for the Anderson dual to bordism theories and invertible QFT’s, II. J. Gökova Geom. Topol. GGT, 16:65–97, 2023. https://arxiv.org/abs/2110.14828.
  119. Mayuko Yamashita. Invertible QFTs and differential Anderson duals. 2023. https://arxiv.org/abs/2304.08833.
  120. Differential models for the Anderson dual to bordism theories and invertible QFT’s, I. J. Gökova Geom. Topol. GGT, 16:1–64, 2023. https://arxiv.org/abs/2106.09270.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 10 likes.