Papers
Topics
Authors
Recent
2000 character limit reached

Social Recommendation through Heterogeneous Graph Modeling of the Long-term and Short-term Preference Defined by Dynamic Time Spans (2312.14306v2)

Published 21 Dec 2023 in cs.SI, cs.AI, and cs.CE

Abstract: Social recommendations have been widely adopted in substantial domains. Recently, graph neural networks (GNN) have been employed in recommender systems due to their success in graph representation learning. However, dealing with the dynamic property of social network data is a challenge. This research presents a novel method that provides social recommendations by incorporating the dynamic property of social network data in a heterogeneous graph. The model aims to capture user preference over time without going through the complexities of a dynamic graph by adding period nodes to define users' long-term and short-term preferences and aggregating assigned edge weights. The model is applied to real-world data to argue its superior performance. Promising results demonstrate the effectiveness of this model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. B. M. Jafari, X. Luo, and A. Jafari, “Unsupervised keyword extraction for hashtag recommendation in social media,” The International FLAIRS Conference Proceedings, vol. 36, no. 1, May 2023. [Online]. Available: https://journals.flvc.org/FLAIRS/article/view/133280
  2. C. Basu, H. Hirsh, and W. W. Cohen, “Recommendation as classification: Using social and content-based information in recommendation,” in AAAI/IAAI, 1998.
  3. S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system,” ACM Computing Surveys, vol. 52, no. 1, pp. 1–38, jan 2020.
  4. B. Mohammad Jafari, M. Zhao, and A. Jafari, “Rumi: An intelligent agent enhancing learning management systems using machine learning techniques,” Journal of Software Engineering and Applications, vol. 15, pp. 325–343, 09 2022.
  5. ——, “Rumi: An intelligent agent enhancing learning management systems using machine learning techniques,” Journal of Software Engineering and Applications, vol. 15, pp. 325–343, 09 2022.
  6. S. Zhang, Y. Tay, L. Yao, and A. Sun, “Next item recommendation with self-attention,” 2018. [Online]. Available: https://arxiv.org/abs/1808.06414
  7. F. Eskandanian and B. Mobasher, “Detecting changes in user preferences using hidden markov models for sequential recommendation tasks,” 2018. [Online]. Available: https://arxiv.org/abs/1810.00272
  8. F. Sanna Passino, L. Maystre, D. Moor, A. Anderson, and M. Lalmas, “Where to next? a dynamic model of user preferences,” in Proceedings of the Web Conference 2021, ser. WWW ’21.   New York, NY, USA: Association for Computing Machinery, 2021, p. 3210–3220. [Online]. Available: https://doi.org/10.1145/3442381.3450028
  9. L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun, “Temporal recommendation on graphs via long- and short-term preference fusion,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’10.   New York, NY, USA: Association for Computing Machinery, 2010, p. 723–732. [Online]. Available: https://doi.org/10.1145/1835804.1835896
  10. Q. D. Truong, Q. B. Truong, and T. Dkaki, “Graph methods for social network analysis,” in International Conference on Nature of computation and Communication.   Springer, 2016, pp. 276–286.
  11. A. Salamat, X. Luo, and A. Jafari, “HeteroGraphRec: A heterogeneous graph-based neural networks for social recommendations,” Knowledge-Based Systems, vol. 217, p. 106817, apr 2021.
  12. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2009.
  13. S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks in recommender systems: A survey,” 2020. [Online]. Available: https://arxiv.org/abs/2011.02260
  14. B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk,” in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.   ACM, aug 2014.
  15. A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” 2016. [Online]. Available: https://arxiv.org/abs/1607.00653
  16. F. Xia, J. Liu, H. Nie, Y. Fu, L. Wan, and X. Kong, “Random walks: A review of algorithms and applications,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 4, no. 2, pp. 95–107, apr 2020.
  17. Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
  18. S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. Orgun, L. Cao, N. Wang, F. Ricci, and P. S. Yu, “Graph learning approaches to recommender systems: A review,” 2020. [Online]. Available: https://arxiv.org/abs/2004.11718
  19. W. Fan, Q. Li, and M. Cheng, “Deep modeling of social relations for recommendation,” in Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, ser. AAAI’18/IAAI’18/EAAI’18.   AAAI Press, 2018.
  20. R. v. d. Berg, T. N. Kipf, and M. Welling, “Graph convolutional matrix completion,” 2017. [Online]. Available: https://arxiv.org/abs/1706.02263
  21. M. Li, K. Tei, and Y. Fukazawa, “An efficient co-attention neural network for social recommendation,” in IEEE/WIC/ACM International Conference on Web Intelligence, ser. WI ’19.   New York, NY, USA: Association for Computing Machinery, 2019, p. 34–42. [Online]. Available: https://doi.org/10.1145/3350546.3352498
  22. W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural networks for social recommendation,” 2019. [Online]. Available: https://arxiv.org/abs/1902.07243
  23. P. Liu and W. Yu, “Capsrec: A capsule graph neural network model for social recommendation,” in 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 2021, pp. 359–363.
  24. Y. Li and J. Tang, “Expertise search in a time-varying social network,” in 2008 The Ninth International Conference on Web-Age Information Management, 2008, pp. 293–300.
  25. K. Sun, T. Qian, T. Chen, Y. Liang, Q. V. H. Nguyen, and H. Yin, “Where to go next: Modeling long- and short-term user preferences for point-of-interest recommendation,” in AAAI, 2020.
  26. H. Liu, Z. Xu, Q. Zhang, and Y. Tang, “Integrating users’ long- and short-term preferences for session-based recommendation,” in 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2022, pp. 611–616.
  27. P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” stat, vol. 1050, p. 20, 2017.
  28. J. Tang, H. Gao, and H. Liu, “mTrust: Discerning multi-faceted trust in a connected world,” in Proceedings of the fifth ACM international conference on Web search and data mining.   ACM, 2012, pp. 93–102.
  29. H. Tang, J.and Gao, H. Liu, and A. Das Sarma, “eTrust: Understanding trust evolution in an online world,” ACM, pp. 253–261, 2012.
  30. A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,” Advances in neural information processing systems, vol. 20, 2007.
  31. H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: Social recommendation using probabilistic matrix factorization,” in Proceedings of the 17th ACM Conference on Information and Knowledge Management, ser. CIKM ’08.   New York, NY, USA: Association for Computing Machinery, 2008, p. 931–940. [Online]. Available: https://doi.org/10.1145/1458082.1458205
  32. M. Jamali and M. Ester, “A matrix factorization technique with trust propagation for recommendation in social networks,” in Proceedings of the Fourth ACM Conference on Recommender Systems, ser. RecSys ’10.   New York, NY, USA: Association for Computing Machinery, 2010, p. 135–142. [Online]. Available: https://doi.org/10.1145/1864708.1864736
  33. H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems with social regularization,” in Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, ser. WSDM ’11.   New York, NY, USA: Association for Computing Machinery, 2011, p. 287–296. [Online]. Available: https://doi.org/10.1145/1935826.1935877
  34. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in Proceedings of the 26th International Conference on World Wide Web, ser. WWW ’17.   Republic and Canton of Geneva, CHE: International World Wide Web Conferences Steering Committee, 2017, p. 173–182. [Online]. Available: https://doi.org/10.1145/3038912.3052569
  35. B. Yang, Y. Lei, J. Liu, and W. Li, “Social collaborative filtering by trust,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 8, pp. 1633–1647, 2017.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: