Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scalable Full-Stack Benchmarks for Quantum Computers

Published 21 Dec 2023 in quant-ph | (2312.14107v1)

Abstract: Quantum processors are now able to run quantum circuits that are infeasible to simulate classically, creating a need for benchmarks that assess a quantum processor's rate of errors when running these circuits. Here, we introduce a general technique for creating efficient benchmarks from any set of quantum computations, specified by unitary circuits. Our benchmarks assess the integrated performance of a quantum processor's classical compilation algorithms and its low-level quantum operations. Unlike existing "full-stack benchmarks", our benchmarks do not require classical simulations of quantum circuits, and they use only efficient classical computations. We use our method to create randomized circuit benchmarks, including a computationally efficient version of the quantum volume benchmark, and an algorithm-based benchmark that uses Hamiltonian simulation circuits. We perform these benchmarks on IBM Q devices and in simulations, and we compare their results to the results of existing benchmarking methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Easwar Magesan, Jay M Gambetta,  and Joseph Emerson, “Scalable and robust randomized benchmarking of quantum processes,” Phys. Rev. Lett. 106, 180504 (2011).
  2. Easwar Magesan, Jay M Gambetta,  and Joseph Emerson, “Characterizing quantum gates via randomized benchmarking,” Phys. Rev. A 85, 042311 (2012).
  3. Timothy Proctor, Stefan Seritan, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout,  and Kevin Young, “Scalable randomized benchmarking of quantum computers using mirror circuits,” Phys. Rev. Lett. 129, 150502 (2022a).
  4. Timothy J Proctor, Arnaud Carignan-Dugas, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout,  and Kevin Young, “Direct randomized benchmarking for multiqubit devices,” Phys. Rev. Lett. 123 (2019).
  5. David C McKay, Andrew W Cross, Christopher J Wood,  and Jay M Gambetta, “Correlated randomized benchmarking,”   (2020), arXiv:2003.02354 [quant-ph] .
  6. Jordan Hines, Marie Lu, Ravi K. Naik, Akel Hashim, Jean-Loup Ville, Brad Mitchell, John Mark Kriekebaum, David I. Santiago, Stefan Seritan, Erik Nielsen, Robin Blume-Kohout, Kevin Young, Irfan Siddiqi, Birgitta Whaley,  and Timothy Proctor, “Demonstrating scalable randomized benchmarking of universal gate sets,” Phys. Rev. X 13, 041030 (2023).
  7. Jonas Helsen, Xiao Xue, Lieven M. K. Vandersypen,  and Stephanie Wehner, “A new class of efficient randomized benchmarking protocols,” npj Quantum Information 5, 71 (2019).
  8. Jonas Helsen, Sepehr Nezami, Matthew Reagor,  and Michael Walter, “Matchgate benchmarking: Scalable benchmarking of a continuous family of many-qubit gates,” Quantum 6, 657 (2022a).
  9. Jahan Claes, Eleanor Rieffel,  and Zhihui Wang, “Character randomized benchmarking for non-multiplicity-free groups with applications to subspace, leakage, and matchgate randomized benchmarking,” PRX Quantum 2, 010351 (2021).
  10. Andrew W Cross, Easwar Magesan, Lev S Bishop, John A Smolin,  and Jay M Gambetta, “Scalable randomised benchmarking of non-clifford gates,” NPJ Quantum Inf. 2, 16012 (2016).
  11. Joseph Emerson, Robert Alicki,  and Karol Życzkowski, “Scalable noise estimation with random unitary operators,” J. Opt. B Quantum Semiclass. Opt. 7, S347 (2005).
  12. Joseph Emerson, Marcus Silva, Osama Moussa, Colm Ryan, Martin Laforest, Jonathan Baugh, David G Cory,  and Raymond Laflamme, “Symmetrized characterization of noisy quantum processes,” Science 317, 1893–1896 (2007).
  13. Yunchao Liu, Matthew Otten, Roozbeh Bassirianjahromi, Liang Jiang,  and Bill Fefferman, “Benchmarking near-term quantum computers via random circuit sampling,”  (2021), arXiv:2105.05232 [quant-ph] .
  14. Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis,  and Hartmut Neven, “Characterizing quantum supremacy in near-term devices,” Nat. Phys. 14, 595 (2018).
  15. Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation,  and Jay M Gambetta, “Validating quantum computers using randomized model circuits,” Phys. Rev. A 100, 032328 (2019).
  16. Daniel Mills, Seyon Sivarajah, Travis L. Scholten,  and Ross Duncan, “Application-Motivated, Holistic Benchmarking of a Full Quantum Computing Stack,” Quantum 5, 415 (2021).
  17. Elijah Pelofske, Andreas Bartschi,  and Stephan Eidenbenz, “Quantum volume in practice: What users can expect from NISQ devices,” IEEE Transactions on Quantum Engineering 3, 1–19 (2022).
  18. Charles H. Baldwin, Karl Mayer, Natalie C. Brown, Ciarán Ryan-Anderson,  and David Hayes, “Re-examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations,” Quantum 6, 707 (2022).
  19. Keith Miller, Charles Broomfield, Ann Cox, Joe Kinast,  and Brandon Rodenburg, “An improved volumetric metric for quantum computers via more representative quantum circuit shapes,”  (2022), arXiv:2207.02315 [quant-ph] .
  20. Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, Abhinav Kandala, Antonio Mezzacapo, Peter Müller, Walter Riess, Gian Salis, John Smolin, Ivano Tavernelli,  and Kristan Temme, “Quantum optimization using variational algorithms on near-term quantum devices,” Quantum Science and Technology 3, 030503 (2018).
  21. Mirko Amico, Helena Zhang, Petar Jurcevic, Lev S. Bishop, Paul Nation, Andrew Wack,  and David C. McKay, “Defining standard strategies for quantum benchmarks,”  (2023), arXiv:2303.02108 [quant-ph] .
  22. Thomas Lubinski, Sonika Johri, Paul Varosy, Jeremiah Coleman, Luning Zhao, Jason Necaise, Charles H. Baldwin, Karl Mayer,  and Timothy Proctor, “Application-oriented performance benchmarks for quantum computing,” IEEE Transactions on Quantum Engineering 4, 1–32 (2023).
  23. Timothy Proctor, Stefan Seritan, Erik Nielsen, Kenneth Rudinger, Kevin Young, Robin Blume-Kohout,  and Mohan Sarovar, “Establishing trust in quantum computations,”  (2022b), arXiv:2204.07568 [quant-ph] .
  24. Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen,  and Robin Blume-Kohout, “Measuring the capabilities of quantum computers,” Nature Physics 18, 75–79 (2022c).
  25. Scott Aaronson and Lijie Chen, ‘‘Complexity-theoretic foundations of quantum supremacy experiments,”  (2016), arXiv:1612.05903 [quant-ph] .
  26. “Qiskit,” URL: https://qisqkit.org.
  27. Lorenza Viola, Emanuel Knill,  and Seth Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).
  28. Robin Blume-Kohout and Kevin C Young, “A volumetric framework for quantum computer benchmarks,” Quantum 4, 362 (2020).
  29. We note that many compilations optimizations have been developed to improve processor performance and studied in the context of QV (Cross et al. (2019); Baldwin et al. (2022)). We do use heavily optimized classical pre-processing here, and therefore our results are not expected to reflect the optimal full-stack processor performance.
  30. Joel J Wallman and Joseph Emerson, “Noise tailoring for scalable quantum computation via randomized compiling,” Phys. Rev. A 94, 052325 (2016).
  31. Steven T. Flammia and Yi-Kai Liu, “Direct fidelity estimation from few pauli measurements,” Phys. Rev. Lett. 106, 230501 (2011).
  32. Marcus P. da Silva, Olivier Landon-Cardinal,  and David Poulin, “Practical characterization of quantum devices without tomography,” Phys. Rev. Lett. 107, 210404 (2011).
Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.