Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Theory of interlayer exciton dynamics in 2D TMDCs Heterolayers under the influence of strain reconstruction and disorder (2312.14054v2)

Published 21 Dec 2023 in cond-mat.mes-hall

Abstract: Monolayers of transition metal dichalcogenides (TMDC) became one of the most studied nanostructures in the last decade. Combining two different TMDC monolayers results in a heterostructure whose properties can be individually tuned by the twist angle between the lattices of the two van-der-Waals layers and the relative placement of the layers, leading to Moir\'e cells. For small twist angles, lattice reconstruction leads to strong strain fields in the Moir\'e cells. In this paper, we combine an existing theory for lattice reconstruction with a quantum dynamic theory for interlayer excitons and their dynamics due to exciton phonon scattering using a polaron transformation. The exciton theory is formulated in real space instead of the commonly used quasi-momentum space to account for imperfections in the heterolayer breaking lattice translational symmetry. We can analyze the structure of the localized and delocalized exciton states and their exciton-phonon scattering rates for single phonon processes using Born-Markov approximation and multi-phonon processes using a polaron transformation. Furthermore, linear optical spectra and exciton relaxation Green functions are calculated and discussed. A P-stacked MoSe$_2$/WSe$_2$ heterolayer is used as an illustrative example. It shows excitons localized in the potential generated through the Moir\'e-pattern and strain and a delocalized continuum. The exciton-phonon relaxation times vary depending on the strain and range from sub-pico seconds up to nanoseconds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. G. Gui, J. Li, and J. Zhong, Band structure engineering of graphene by strain: First-principles calculations, Phys. Rev. B 78, 075435 (2008).
  2. C. Kamal, A. Chakrabarti, and M. Ezawa, Direct band gaps in group iv-vi monolayer materials: Binary counterparts of phosphorene, Phys. Rev. B 93, 125428 (2016).
  3. G. Berghäuser and E. Malic, Analytical approach to excitonic properties of mos 2, Physical Review B 89, 125309 (2014).
  4. F. Lengers, T. Kuhn, and D. E. Reiter, Theory of the absorption line shape in monolayers of transition metal dichalcogenides, Phys. Rev. B 101, 155304 (2020).
  5. S. C. Kuhn and M. Richter, Tensor network strategies for calculating biexcitons and trions in monolayer two-dimensional materials beyond the ground state, Phys. Rev. B 101, 075302 (2020).
  6. S. C. Kuhn and M. Richter, Combined tensor network/cluster expansion method using logic gates: Illustrated for (bi)excitons by a single-layer mos2subscriptmos2{\mathrm{mos}}_{2}roman_mos start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT model system, Phys. Rev. B 99, 241301 (2019).
  7. R. Zimmermann, E. Runge, and V. Savona, Chapter 4 - theory of resonant secondary emission: Rayleigh scattering versus luminescence, in Quantum Coherence Correlation and Decoherence in Semiconductor Nanostructures, edited by T. Takagahara (Academic Press, San Diego, 2003) pp. 89–165.
  8. H. Haug and S. W. Koch, Quantum theory of the optical and electronic properties of semiconductors (World Scientific Publishing Company, 2009).
  9. D. A. Ruiz-Tijerina, I. Soltero, and F. Mireles, Theory of moiré localized excitons in transition metal dichalcogenide heterobilayers, Phys. Rev. B 102, 195403 (2020).
  10. F. Wu, T. Lovorn, and A. H. MacDonald, Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers, Phys. Rev. B 97, 035306 (2018).
  11. P. Cudazzo, I. V. Tokatly, and A. Rubio, Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane, Phys. Rev. B 84, 085406 (2011).
  12. V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans. Math. Software 31, 351 (2005).
  13. X.-Q. Li, H. Nakayama, and Y. Arakawa, Phonon bottleneck in quantum dots: Role of lifetime of the confined optical phonons, Phys. Rev. B 59, 5069 (1999).
  14. G. D. Mahan, Many-particle physics (Springer Science & Business Media, 2000).
  15. A. Würger, Strong-coupling theory for the spin-phonon model, Phys. Rev. B 57, 347 (1998).
  16. I. Wilson-Rae and A. Imamoğlu, Quantum dot cavity-qed in the presence of strong electron-phonon interactions, Phys. Rev. B 65, 235311 (2002).
  17. C. Roy and S. Hughes, Polaron master equation theory of the quantum-dot mollow triplet in a semiconductor cavity-qed system, Phys. Rev. B 85, 115309 (2012).
  18. R. Manson, K. Roy-Choudhury, and S. Hughes, Polaron master equation theory of pulse-driven phonon-assisted population inversion and single-photon emission from quantum-dot excitons, Phys. Rev. B 93, 155423 (2016).
  19. S. Mukamel, Principles of Nonlinear Optical Spectroscopy, Oxford series in optical and imaging sciences (Oxford University Press, 1995).
  20. T. Renger and R. A. Marcus, On the relation of protein dynamics and exciton relaxation in pigment–protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra, The Journal of chemical physics 116, 9997 (2002).
  21. P. Anderson, The size of localized states near the mobility edge, Proceedings of the National Academy of Sciences 69, 1097 (1972).
  22. E. Runge and R. Zimmermann, Porter-thomas distribution of oscillator strengths of quantum well excitons, physica status solidi (b) 221, 269 (2000).
  23. B. Krummheuer, V. M. Axt, and T. Kuhn, Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots, Physical Review B 65, 195313 (2002).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 4 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube