Papers
Topics
Authors
Recent
2000 character limit reached

Docking-based generative approaches in the search for new drug candidates

Published 22 Nov 2023 in q-bio.BM, cs.AI, and cs.LG | (2312.13944v1)

Abstract: Despite the great popularity of virtual screening of existing compound libraries, the search for new potential drug candidates also takes advantage of generative protocols, where new compound suggestions are enumerated using various algorithms. To increase the activity potency of generative approaches, they have recently been coupled with molecular docking, a leading methodology of structure-based drug design. In this review, we summarize progress since docking-based generative models emerged. We propose a new taxonomy for these methods and discuss their importance for the field of computer-aided drug design. In addition, we discuss the most promising directions for further development of generative protocols coupled with docking.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Mitchell JBO. Machine learning methods in chemoinformatics Wiley Interdiscip Rev Comput Mol Sci. 2014;4:n/a-n/a. doi:10.1002/wcms.1183.
  2. doi:10.1021/acs.jcim.6b00355.
  3. doi:10.1371/journal.pcbi.1003889.
  4. doi:dx.doi.org/10.1021/ci400187y.
  5. doi:10.2174/1568026620666201207095626.
  6. doi:10.1007/s12551-016-0247-1.
  7. doi:https://doi.org/10.1016/j.drudis.2021.05.019.
  8. doi:10.1021/acs.jcim.0c01496.
  9. doi:10.48550/arXiv.2202.07230.
  10. doi:10.1093/bib/bbab344.
  11. doi:10.48550/arXiv.1312.6114.
  12. doi:10.48550/arXiv.1511.05644.
  13. doi:10.1021/ci300604z.
  14. doi:10.1093/bioinformatics/btv082.
  15. doi:10.1021/jm0306430.
  16. doi:10.1186/s13321-021-00522-2.
  17. Choi J, Lee J. V-dock: fast generation of novel drug-like molecules using machine-learning-based docking score and molecular optimization Int J Mol Sci. 2021;22:11635. doi:10.3390/ijms222111635.
  18. doi:10.48550/arXiv.2006.16955.
  19. doi:10.1021/acs.jcim.8b00839.
  20. Steinmann C, Jensen JH. Using a genetic algorithm to find molecules with good docking scores PeerJ Phys Chem. 2021;3. doi:10.7717/peerj-pchem.18.
  21. doi:10.1186/s13321-021-00516-0.
  22. doi:10.1039/D1SC04444C.
  23. doi:10.1039/D1SC02436A.
  24. doi:10.48550/arXiv.2203.10446.
  25. doi:10.48550/arXiv.2205.07249.
  26. doi:https://doi.org/10.1016/j.ddtec.2020.11.004.
  27. doi:10.1021/acs.molpharmaceut.9b00634.
  28. doi:10.1039/D1SC05976A.
  29. doi:10.1021/acs.jcim.0c01494.
  30. Zhang J, Chen H. De novo molecule design using molecular generative models constrained by ligand–protein interactions J Chem Inf Model. 2022;62:3291-3306. doi:10.1021/acs.jcim.2c00177.
  31. doi:10.1186/s13321-021-00565-5.
  32. doi:10.1021/acs.jcim.8b00706.
  33. Dey F, Caflisch A. Fragment-based de novo ligand design by multiobjective evolutionary optimization J Chem Inf Model. 2008;48:679-690. doi:10.1021/ci700424b.
  34. Jensen JH. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space Chem Sci. 2019;10:3567-3572. doi:10.1039/C8SC05372C.
  35. Spiegel JO, Durrant JD. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization J Cheminform. 2020;12:25. doi:10.1186/s13321-020-00429-4.
  36. doi:10.48550/arXiv.2102.09844.
  37. doi:10.1186/s13321-017-0235-x.
  38. doi:10.1039/D2DD00003B.
  39. Kwon Y, Lee J. MolFinder: an evolutionary algorithm for the global optimization of molecular properties and the extensive exploration of chemical space using SMILES J Cheminform. 2021;13:1–14. doi:10.1186/s13321-021-00501-7.
  40. doi:10.1002/(SICI)1096-987X(19970715)18:9<1222::AID-JCC10>3.0.CO;2-7.
  41. doi:10.3389/fchem.2020.00142.
  42. Jeon W, Kim D. Autonomous molecule generation using reinforcement learning and docking to develop potential novel inhibitors Sci Rep. 2020;10:1–11. doi:10.1038/s41598-020-78537-2.
  43. doi:10.48550/ARXIV.2110.01219.
  44. doi:10.1021/acs.jcim.0c00915.
  45. doi:10.1021/acs.jcim.1c00469.
  46. doi:10.26434/chemrxiv-2022-qkx9f.
  47. doi:10.1038/s42256-022-00522-3.
  48. doi:10.1186/s13321-021-00563-7.
  49. doi:10.1039/D1SC00231G.
  50. doi:10.1021/acs.jcim.1c00746.
  51. doi:10.1021/acs.jcim.0c00833.
  52. doi:10.1021/acs.jcim.0c00120.
  53. doi:10.1021/acs.jcim.9b00367.
  54. doi:10.1021/acsomega.1c00477.
  55. doi:10.48550/arXiv.2109.15308.
  56. doi:10.1021/acs.jcim.9b01120.
  57. doi:10.1038/s41467-022-28526-y.
  58. doi:10.1038/s42256-020-0160-y.
  59. doi:10.1126/sciadv.abg3338.
Citations (19)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.