Data-driven path collective variables (2312.13868v1)
Abstract: Identifying optimal collective variables to model transformations, using atomic-scale simulations, is a long-standing challenge. We propose a new method for the generation, optimization, and comparison of collective variables, which can be thought of as a data-driven generalization of the path collective variable concept. It consists in a kernel ridge regression of the committor probability, which encodes a transformation's progress. The resulting collective variable is one-dimensional, interpretable, and differentiable, making it appropriate for enhanced sampling simulations requiring biasing. We demonstrate the validity of the method on two different applications: a precipitation model, and the association of Li$+$ and F$-$ in water. For the former, we show that global descriptors such as the permutation invariant vector allow to reach an accuracy far from the one achieved \textit{via} simpler, more intuitive variables. For the latter, we show that information correlated with the transformation mechanism is contained in the first solvation shell only, and that inertial effects prevent the derivation of optimal collective variables from the atomic positions only.
- J.-E. Shea and C. L. Brooks III, Annual Review of Physical Chemistry 52, 499 (2001).
- A. M. Saitta and F. Saija, Proceedings of the National Academy of Sciences 111, 13768 (2014).
- S. Jungblut and C. Dellago, The European Physical Journal E 39, 1 (2016).
- F. Noé and F. Nuske, Multiscale Modeling & Simulation 11, 635 (2013).
- L. Molgedey and H. G. Schuster, Physical review letters 72, 3634 (1994).
- P. Tiwary and B. Berne, Proceedings of the National Academy of Sciences 113, 2839 (2016).
- J. Rydzewski, The Journal of Physical Chemistry Letters 14, 5216 (2023).
- D. Wang and P. Tiwary, The Journal of Chemical Physics 154 (2021).
- M. M. Sultan and V. S. Pande, The Journal of chemical physics 149 (2018).
- A. Ma and A. R. Dinner, The Journal of Physical Chemistry B 109, 6769 (2005).
- B. Peters and B. L. Trout, The Journal of chemical physics 125, 054108 (2006).
- B. Peters, Chemical Physics Letters 554, 248 (2012).
- F. Pietrucci and A. M. Saitta, Proceedings of the National Academy of Sciences 112, 15030 (2015).
- B. Peters, The Journal of chemical physics 125 (2006).
- E. A. Nadaraya, Theory of Probability & Its Applications 9, 141 (1964).
- G. S. Watson, Sankhyā: The Indian Journal of Statistics, Series A , 359 (1964).
- J. Behler and M. Parrinello, Physical review letters 98, 146401 (2007).
- G. A. Gallet and F. Pietrucci, The Journal of Chemical Physics 139, 074101 (2013).
- R. Lai and J. Lu, Multiscale Modeling & Simulation 16, 710 (2018).
- K. Müller and L. D. Brown, Theoretica chimica acta 53, 75 (1979).
- E. Weinan and E. Vanden-Eijnden, in Multiscale modelling and simulation (Springer, 2004) pp. 35–68.
- “Plumed – hack-the-tree branch,” https://github.com/plumed/plumed2/tree/hack-the-tree (2023).
- E. Peled and S. Menkin, Journal of The Electrochemical Society 164, A1703 (2017).
- A. J. Ballard and C. Dellago, The Journal of Physical Chemistry B 116, 13490 (2012).
- I. S. Joung and T. E. Cheatham III, The journal of physical chemistry B 112, 9020 (2008).
- G. Hummer, The Journal of chemical physics 120, 516 (2004).
- M. Lapelosa and C. F. Abrams, Computer Physics Communications 184, 2310 (2013).
- T. Gustafsson and G. D. McBain, Journal of Open Source Software 5, 2369 (2020).
- D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980 (2014).
- T. Liang and A. Rakhlin, The Annals of Statistics 48, 1329 (2020).
- P. Diaconis and S. Zabell, Statistical Science , 284 (1991).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.