Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Data-driven path collective variables (2312.13868v1)

Published 21 Dec 2023 in physics.chem-ph, cs.LG, and physics.comp-ph

Abstract: Identifying optimal collective variables to model transformations, using atomic-scale simulations, is a long-standing challenge. We propose a new method for the generation, optimization, and comparison of collective variables, which can be thought of as a data-driven generalization of the path collective variable concept. It consists in a kernel ridge regression of the committor probability, which encodes a transformation's progress. The resulting collective variable is one-dimensional, interpretable, and differentiable, making it appropriate for enhanced sampling simulations requiring biasing. We demonstrate the validity of the method on two different applications: a precipitation model, and the association of Li$+$ and F$-$ in water. For the former, we show that global descriptors such as the permutation invariant vector allow to reach an accuracy far from the one achieved \textit{via} simpler, more intuitive variables. For the latter, we show that information correlated with the transformation mechanism is contained in the first solvation shell only, and that inertial effects prevent the derivation of optimal collective variables from the atomic positions only.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. J.-E. Shea and C. L. Brooks III, Annual Review of Physical Chemistry 52, 499 (2001).
  2. A. M. Saitta and F. Saija, Proceedings of the National Academy of Sciences 111, 13768 (2014).
  3. S. Jungblut and C. Dellago, The European Physical Journal E 39, 1 (2016).
  4. F. Noé and F. Nuske, Multiscale Modeling & Simulation 11, 635 (2013).
  5. L. Molgedey and H. G. Schuster, Physical review letters 72, 3634 (1994).
  6. P. Tiwary and B. Berne, Proceedings of the National Academy of Sciences 113, 2839 (2016).
  7. J. Rydzewski, The Journal of Physical Chemistry Letters 14, 5216 (2023).
  8. D. Wang and P. Tiwary, The Journal of Chemical Physics 154 (2021).
  9. M. M. Sultan and V. S. Pande, The Journal of chemical physics 149 (2018).
  10. A. Ma and A. R. Dinner, The Journal of Physical Chemistry B 109, 6769 (2005).
  11. B. Peters and B. L. Trout, The Journal of chemical physics 125, 054108 (2006).
  12. B. Peters, Chemical Physics Letters 554, 248 (2012).
  13. F. Pietrucci and A. M. Saitta, Proceedings of the National Academy of Sciences 112, 15030 (2015).
  14. B. Peters, The Journal of chemical physics 125 (2006).
  15. E. A. Nadaraya, Theory of Probability & Its Applications 9, 141 (1964).
  16. G. S. Watson, Sankhyā: The Indian Journal of Statistics, Series A , 359 (1964).
  17. J. Behler and M. Parrinello, Physical review letters 98, 146401 (2007).
  18. G. A. Gallet and F. Pietrucci, The Journal of Chemical Physics 139, 074101 (2013).
  19. R. Lai and J. Lu, Multiscale Modeling & Simulation 16, 710 (2018).
  20. K. Müller and L. D. Brown, Theoretica chimica acta 53, 75 (1979).
  21. E. Weinan and E. Vanden-Eijnden, in Multiscale modelling and simulation (Springer, 2004) pp. 35–68.
  22. “Plumed – hack-the-tree branch,” https://github.com/plumed/plumed2/tree/hack-the-tree (2023).
  23. E. Peled and S. Menkin, Journal of The Electrochemical Society 164, A1703 (2017).
  24. A. J. Ballard and C. Dellago, The Journal of Physical Chemistry B 116, 13490 (2012).
  25. I. S. Joung and T. E. Cheatham III, The journal of physical chemistry B 112, 9020 (2008).
  26. G. Hummer, The Journal of chemical physics 120, 516 (2004).
  27. M. Lapelosa and C. F. Abrams, Computer Physics Communications 184, 2310 (2013).
  28. T. Gustafsson and G. D. McBain, Journal of Open Source Software 5, 2369 (2020).
  29. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980  (2014).
  30. T. Liang and A. Rakhlin, The Annals of Statistics 48, 1329 (2020).
  31. P. Diaconis and S. Zabell, Statistical Science , 284 (1991).
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.