Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Approximating reproduction numbers: a general numerical method for age-structured models (2312.13477v2)

Published 20 Dec 2023 in q-bio.PE, cs.NA, math.DS, and math.NA

Abstract: In this paper, we introduce a general numerical method to approximate the reproduction numbers of a large class of multi-group, age-structured, population models with a finite age span. To provide complete flexibility in the definition of the birth and transition processes, we propose an equivalent formulation for the age-integrated state within the extended space framework. Then, we discretize the birth and transition operators via pseudospectral collocation. We discuss applications to epidemic models with continuous and piecewise continuous rates, with different interpretations of the age variable (e.g., demographic age, infection age and disease age) and the transmission terms (e.g., horizontal and vertical transmission). The tests illustrate that the method can compute different reproduction numbers, including the basic and type reproduction numbers as special cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. “Quantitative investigations of different vaccination policies for the control of congenital rubella syndrome (CRS) in the United Kingdom” In Epidemiol. Infect. 96.2 Cambridge University Press, 1986, pp. 305–333 DOI: 10.1017/s0022172400066079
  2. “Vaccination against rubella and measles: quantitative investigations of different policies” In Epidemiol. Infect. 90.2 Cambridge University Press, 1983, pp. 259–325 DOI: 10.1017/S002217240002893X
  3. “Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes” In Epidemiol. Infect. 94.3 Cambridge University Press, 1985, pp. 365–436 DOI: 10.1017/S002217240006160X
  4. “Infectious Diseases of Humans: Dynamics and Control” Oxford University Press, 1991
  5. “A pseudospectral method for investigating the stability of linear population models with two physiological structures” In Math. Biosci. Eng. 20.3, 2023, pp. 4493–4515 DOI: 10.3934/mbe.2023208
  6. C. Barril, P.A. Bliman and S. Cuadrado “Final Size for Epidemic Models with Asymptomatic Transmission” In Bull. Math. Biol. 85.6 Springer, 2023, pp. 52 DOI: 10.1007/ss11538-023-01159-y
  7. “On the basic reproduction number in continuously structured populations” In Math. Methods Appl. Sci. 44.1 Wiley Online Library, 2021, pp. 799–812 DOI: 10.1002/mma.6787
  8. “Reproduction number for an age of infection structured model” In Math. Model. Nat. Phenom. 16 EDP Sciences, 2021, pp. 42 DOI: 10.1051/mmnp/2021033
  9. C. Barril, À. Calsina and J. Ripoll “A practical approach to R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in continuous-time ecological models” In Math. Methods Appl. Sci. 41.18 Wiley Online Library, 2018, pp. 8432–8445 DOI: 10.1002/mma.4673
  10. J. P. Boyd “Chebyshev and Fourier Spectral Methods” Springer, Berlin, 1989
  11. “Bivariate collocation for computing R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in epidemic models with two structures” In Comput. Math. with Appl. 116 Elsevier, 2022, pp. 15–24 DOI: 10.1016/j.camwa.2021.10.026
  12. D. Breda, S. De Reggi and R. Vermiglio “A numerical method for the stability analysis of linear age-structured models with nonlocal diffusion” In SIAM J. Sci. Comput., 2023, pp. (to appear) URL: https://arxiv.org/abs/2304.10835v2
  13. “Efficient numerical computation of the basic reproduction number for structured populations” In J. Comput. Appl. Math 384 Elsevier, 2021, pp. 113165 DOI: 10.1016/j.cam.2020.113165
  14. “Collocation of next-generation operators for computing the basic reproduction number of structured populations” In J. Sci. Comput. 85.2 Springer, 2020, pp. 1–33 DOI: 10.1007/s10915-020-01339-1
  15. D. Breda, S. Maset and R. Vermiglio “Approximation of eigenvalues of evolution operators for linear retarded functional differential equations” In SIAM J. Numer. Anal. 50.3 SIAM, 2012, pp. 1456–1483 DOI: 10.1137/100815505
  16. A. F. Brouwer “Why the Spectral Radius? An intuition-building introduction to the basic reproduction number” In Bull. Math. Biol. 84.9 Springer, 2022, pp. 96 DOI: 10.1007/s11538-022-01057-9
  17. À. Calsina, O. Diekmann and J. Z. Farkas “Structured populations with distributed recruitment: from PDE to delay formulation” In Math. Methods Appl. Sci. 39.18 Wiley Online Library, 2016, pp. 5175–5191 DOI: 10.1002/mma.3898
  18. “Epidemiological models with age structure, proportionate mixing, and cross-immunity” In J. Math. Biol. 27 Springer, 1989, pp. 233–258 DOI: 10.1007/bf00275810
  19. C. W. Clenshaw and A. R. Curtis “A method for numerical integration on an automatic computer” In Numer. Math. (Heidelb) 2 Springer, 1960, pp. 197–205 DOI: 10.1007/bf01386223
  20. J. M. Cushing and O. Diekmann “The many guises of R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (a didactic note)” In J. Theor. Biol. 404 Elsevier, 2016, pp. 295–302 DOI: 10.1016/j.jtbi.2016.06.017
  21. S. De Reggi, F. Scarabel and R. Vermiglio “On the convergence of the pseudospectral approximation of reproduction numbers for age-structured models”, In preparation
  22. O. Diekmann, J. A. P. Heesterbeek and J. A.J. Metz “On the definition and the computation of the basic reproduction ratio R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in models for infectious diseases in heterogeneous populations” In J. Math. Biol. 28.4 Springer, 1990, pp. 365–382 DOI: 10.1007/bf00178324
  23. O. Diekmann, J.A.P. Heesterbeek and M. G. Roberts “The construction of next-generation matrices for compartmental epidemic models” In J. R. Soc. Interface. 7.47 The Royal Society, 2010, pp. 873–885 DOI: 10.1098/rsif.2009.0386
  24. O. Diekmann, F. Scarabel and R. Vermiglio “Pseudospectral discretization of delay differential equations in sun-star formulation: results and conjectures” In Discrete Contin. Dyn. Syst. S 13.9 DiscreteContinuous Dynamical Systems-S, 2020, pp. 2575–2602 DOI: 10.3934/dcdss.2020196
  25. Center Disease Control and Prevention (CDC) “Rubella (German Measles, Three-Day Measles)”, 2020 URL: https://www.cdc.gov/rubella/about/index.html
  26. P. Driessche “Reproduction numbers of infectious disease models” In Infect. Dis. Model. 2.3 Elsevier, 2017, pp. 288–303 DOI: 10.1016/j.idm.2017.06.002
  27. “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission” In Math. Biosci. 180.1-2 Elsevier, 2002, pp. 29–48 DOI: 10.1016/s0025-5564(02)00108-6
  28. “One-parameter semigroups for linear evolution equations” Grad. Texts in Math., Springer, New York, 2000 DOI: 10.1007/b97696
  29. “Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing” In Science 368.6491 American Association for the Advancement of Science, 2020, pp. eabb6936 DOI: 10.1126/science.abb6936
  30. “A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon” In Math. Biosci. Eng 16.5, 2019, pp. 4107–4121 DOI: 10.3934/mbe.2019204
  31. M. Gyllenberg, F. Scarabel and R. Vermiglio “Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization” In Appl. Math. Comput. 333 Elsevier, 2018, pp. 490–505 DOI: 10.1016/j.amc.2018.03.104
  32. J. A. P. Heesterbeek “A brief history of R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and a recipe for its calculation” In Acta Biotheor. 50.3 Springer, 2002, pp. 189–204 DOI: 10.1023/a:1016599411804
  33. “The type-reproduction number T𝑇Titalic_T in models for infectious disease control” In Math. Biosci. 206.1 Elsevier, 2007, pp. 3–10 DOI: 10.1016/j.mbs.2004.10.013
  34. M. Iannelli “Mathematical Theory of Age-Structured Population Dynamics” In Giardini Editori e Stampatori, Pisa, 1995
  35. H. Inaba “Mathematical analysis of an age-structured SIR epidemic model with vertical transmission” In Discrete Continuous Dyn. Syst. Ser. B 6.1 AIMS PRESS, 2006, pp. 69 DOI: 10.3934/dcdsb.2006.6.69
  36. H. Inaba “On the definition and the computation of the type-reproduction number T𝑇Titalic_T for structured populations in heterogeneous environments” In J. Math. Biol. 66 Springer, 2013, pp. 1065–1097 DOI: 10.1007/s00285-012-0522-0
  37. H. Inaba “Endemic threshold analysis for the Kermack-McKendrick reinfection model” In Josai Math. Monogr. 9, 2016, pp. 105–133 DOI: 10.20566/13447777_9_105
  38. H. Inaba “Age-Structured Population Dynamics in Demography and Epidemiology” Springer, Singapore, 2017 DOI: 10.1007/978-981-10-0188-8
  39. “The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model” In Math. Biosci. 216.1 Elsevier, 2008, pp. 77–89 DOI: 10.1016/j.mbs.2008.08.005
  40. H. Kang, X. Huo and S. Ruan “On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures” In Ann. di Mat. Pura ed Appl. 200 Springer, 2021, pp. 403–452 DOI: 10.1007/s10231-020-01001-5
  41. M. G. Krein and M. A. Rutman “Linear operators leaving invariant a cone in a Banach space” In Uspekhi Mat. Nauk. 3.1, 1948, pp. 3–95
  42. T. Kuniya “Numerical approximation of the basic reproduction number for a class of age-structured epidemic models” In Appl. Math. Lett. 73 Elsevier, 2017, pp. 106–112 DOI: 10.1016/j.aml.2017.04.031
  43. M. A. Lewis, Z. Shuai and P. Driessche “A general theory for target reproduction numbers with applications to ecology and epidemiology” In J. Math. Biol. 78 Springer, 2019, pp. 2317–2339 DOI: 10.1007/s00285-019-01345-4
  44. J. Li, D. Blakeley and R.J. Smith? “The Failure of R0subscript𝑅0R_{0}italic_R start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT” In Comput. Math. Methods Med. 2011 Hindawi, 2011 DOI: 10.1155/2011/527610
  45. G. Mastroianni and G. V. Milovanović “Interpolation processes: Basic Theory and Applications” Springer, Berlin, 2008 DOI: 10.1007/978-3-540-68349-0
  46. “Using statistics and mathematical modelling to understand infectious disease outbreaks: COVID-19 as an example” In Infect. Dis. Model. 5 Elsevier, 2020, pp. 409–441 DOI: 10.1016/j.idm.2020.06.008
  47. “Estimation of reproduction numbers in real time: conceptual and statistical challenges” In J. R. Stat. Soc. Ser. A Stat. Soc. 185.Supplement_1 Oxford University Press, 2022, pp. S112–S130 DOI: 10.1111/rssa.12955
  48. Z. Qiu, X. Li and M. Martcheva “Multi-strain persistence induced by host age structure” In J. Math. Anal. Appl. 391.2 Elsevier, 2012, pp. 595–612 DOI: 10.1016/j.jmaa.2012.02.052
  49. “A new method for estimating the effort required to control an infectious disease” In Proc. Royal Soc. B 270.1522 The Royal Society, 2003, pp. 1359–1364 DOI: 10.1098/rspb.2003.2339
  50. “Numerical bifurcation analysis of physiologically structured population models via pseudospectral approximation” In Vietnam J. Math. 49 Springer, 2021, pp. 37–67 DOI: 10.1007/s10013-020-00421-3
  51. F. Scarabel, O. Diekmann and R. Vermiglio “Numerical bifurcation analysis of renewal equations via pseudospectral approximation” In J. Comput. Appl. Math. 397 Elsevier, 2021, pp. 113611 DOI: 10.1016/j.cam.2021.113611
  52. “A renewal equation model to assess roles and limitations of contact tracing for disease outbreak control” In R. Soc. Open Sci. 8.4 The Royal Society, 2021, pp. 202091 DOI: 10.1101/2020.12.27.20232934
  53. “Equations with infinite delay: pseudospectral discretization for numerical stability and bifurcation in an abstract framework” In arXiv preprint arXiv:2306.13351, 2023
  54. Z. Shuai, J.A.P. Heesterbeek and P. Den Driessche “Extending the type reproduction number to infectious disease control targeting contacts between types” In J. Math. Biol. 67 Springer, 2013, pp. 1067–1082 DOI: 10.1007/s00285-012-0579-9
  55. H. R. Thieme “Semiflows generated by Lipschitz perturbations of non-densely defined operators” In Differ. Integral Equ. 3, 1990, pp. 1035–1066 DOI: 10.57262/die/1379101977
  56. H. R. Thieme “Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity” In SIAM J. Appl. Math. 70.1 SIAM, 2009, pp. 188–211 DOI: 10.1137/080732870
  57. L. N. Trefethen “Is Gauss quadrature better than Clenshaw–Curtis?” In SIAM Rev. 50.1 SIAM, 2008, pp. 67–87 DOI: 10.1137/060659831
  58. L. N. Trefethen “Approximation Theory and Approximation Practice” Society for IndustrialApplied Mathematics, Philadelphia, 2013
  59. L.N. Trefethen “Spectral Methods in MATLAB” Software Environ. Tools, Society for IndustrialApplied Mathematics, Philadelphia, 2000 DOI: 10.1137/1.9780898719598
  60. G.F. Webb “Dynamics of populations structured by internal variables” In Math. Zeitschrift 189 Springer, 1985, pp. 319–335 DOI: 10.1007/BF01164156
  61. World Health Organization (WHO) “Rubella”, 2019 URL: https://www.who.int/en/news-room/fact-sheets/detail/rubella
  62. K. Xu “The Chebyshev points of the first kind” In Appl. Numer. Math. 102 Elsevier, 2016, pp. 17–30 DOI: 10.1016/j.apnum.2015.12.002
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.