Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Post-Newtonian limit of generalized scalar-teleparallel theories of gravity (2312.13352v2)

Published 20 Dec 2023 in gr-qc and hep-th

Abstract: We propose a general class of scalar-teleparallel theories, which are based on a scalar field which is coupled to a flat connection with torsion and nonmetricity, and study its post-Newtonian limit using the parametrized post-Newtonian formalism. We find that among this class there are theories whose post-Newtonian limit fully agrees with general relativity; for others only the parameters $\beta$ and $\gamma$ deviate from their general relativity values $\beta = \gamma = 1$, while all other parameters remain the same, thus preserving total momentum conservation, local Lorentz invariance and local position invariance; finally, we also find theories whose post-Newtonian limit is pathological. Our main result is a full classification of the proposed theories into these different cases. We apply our findings to a number of simpler classes of theories and show that for these a subset of the aforementioned cases can be found.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  2. K. Akiyama et al. (Event Horizon Telescope), First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875, L1 (2019), arXiv:1906.11238 [astro-ph.GA] .
  3. K. Akiyama et al. (Event Horizon Telescope), First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, Astrophys. J. Lett. 930, L12 (2022).
  4. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  5. S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505, 59 (2011), arXiv:1011.0544 [gr-qc] .
  6. V. Faraoni and S. Capozziello, Beyond Einstein Gravity, Vol. 170 (Springer, Dordrecht, 2011).
  7. L. Heisenberg, A systematic approach to generalisations of General Relativity and their cosmological implications, Phys. Rept. 796, 1 (2019), arXiv:1807.01725 [gr-qc] .
  8. E. N. Saridakis et al. (CANTATA), Modified Gravity and Cosmology: An Update by the CANTATA Network,   (2021), arXiv:2105.12582 [gr-qc] .
  9. J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, The Geometrical Trinity of Gravity, Universe 5, 173 (2019), arXiv:1903.06830 [hep-th] .
  10. M. Hohmann, Teleparallel Gravity, Lect. Notes Phys. 1017, 145 (2023), arXiv:2207.06438 [gr-qc] .
  11. L. Heisenberg, M. Hohmann, and S. Kuhn, Homogeneous and isotropic cosmology in general teleparallel gravity, Eur. Phys. J. C 83, 315 (2023a), arXiv:2212.14324 [gr-qc] .
  12. L. Heisenberg and M. Hohmann, Gauge-invariant cosmological perturbations in general teleparallel gravity,   (2023), arXiv:2311.05597 [gr-qc] .
  13. L. Heisenberg, M. Hohmann, and S. Kuhn, Cosmological teleparallel perturbations,   (2023b), arXiv:2311.05495 [gr-qc] .
  14. C. M. Will, Theory and experiment in gravitational physics (Cambridge University Press, 1993).
  15. C. M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc] .
  16. C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, 2018).
  17. B. Bertotti, L. Iess, and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425, 374 (2003).
  18. K. Nordtvedt, Jr., Post-Newtonian metric for a general class of scalar tensor gravitational theories and observational consequences, Astrophys. J. 161, 1059 (1970).
  19. M. S. Gladchenko, V. N. Ponomarev, and V. V. Zhytnikov, PPN metric and PPN torsion in the quadratic Poincare gauge theory of gravity, Phys. Lett. B241, 67 (1990).
  20. G. J. Olmo, Post-Newtonian constraints on f(R) cosmologies in metric and Palatini formalism, Phys. Rev. D72, 083505 (2005), arXiv:gr-qc/0505135 [gr-qc] .
  21. T. Clifton, M. Banados, and C. Skordis, The Parameterised Post-Newtonian Limit of Bimetric Theories of Gravity, Class. Quant. Grav. 27, 235020 (2010), arXiv:1006.5619 [gr-qc] .
  22. L. Perivolaropoulos, PPN Parameter gamma and Solar System Constraints of Massive Brans-Dicke Theories, Phys. Rev. D81, 047501 (2010), arXiv:0911.3401 [gr-qc] .
  23. M. Hohmann, Parameterized post-Newtonian formalism for multimetric gravity, Class. Quant. Grav. 31, 135003 (2014), arXiv:1309.7787 [gr-qc] .
  24. J.-T. Li, Y.-P. Wu, and C.-Q. Geng, Parametrized post-Newtonian limit of the teleparallel dark energy model, Phys. Rev. D89, 044040 (2014), arXiv:1312.4332 [gr-qc] .
  25. M. Hohmann, Parametrized post-Newtonian limit of Horndeski’s gravity theory, Phys. Rev. D92, 064019 (2015), arXiv:1506.04253 [gr-qc] .
  26. M. Hohmann, Post-Newtonian parameter γ𝛾\gammaitalic_γ and the deflection of light in ghost-free massive bimetric gravity, Phys. Rev. D95, 124049 (2017), arXiv:1701.07700 [gr-qc] .
  27. H. Mohseni Sadjadi, Parameterized post-Newtonian approximation in a teleparallel model of dark energy with a boundary term, Eur. Phys. J. C77, 191 (2017), arXiv:1606.04362 [gr-qc] .
  28. M. Hohmann, Gauge-invariant approach to the parametrized post-Newtonian formalism, Phys. Rev. D101, 024061 (2020), arXiv:1910.09245 [gr-qc] .
  29. U. Ualikhanova and M. Hohmann, Parameterized post-Newtonian limit of general teleparallel gravity theories, Phys. Rev. D100, 104011 (2019), arXiv:1907.08178 [gr-qc] .
  30. E. D. Emtsova and M. Hohmann, Post-Newtonian limit of scalar-torsion theories of gravity as analogue to scalar-curvature theories, Phys. Rev. D101, 024017 (2020), arXiv:1909.09355 [gr-qc] .
  31. K. Flathmann and M. Hohmann, Post-Newtonian Limit of Generalized Scalar-Torsion Theories of Gravity, Phys. Rev. D101, 024005 (2020), arXiv:1910.01023 [gr-qc] .
  32. M. Hohmann, Variational Principles in Teleparallel Gravity Theories, Universe 7, 114 (2021), arXiv:2104.00536 [gr-qc] .
  33. V. Faraoni, Cosmology in scalar tensor gravity, Vol. 139 (2004).
  34. Y. Fujii and K. Maeda, The scalar-tensor theory of gravitation (Cambridge University Press, 2007).
  35. M. Hohmann, L. Järv, and U. Ualikhanova, Covariant formulation of scalar-torsion gravity, Phys. Rev. D97, 104011 (2018), arXiv:1801.05786 [gr-qc] .
  36. X.-M. Deng and Y. Xie, Solar System tests of a scalar-tensor gravity with a general potential: Insensitivity of light deflection and Cassini tracking, Phys. Rev. D 93, 044013 (2016).
  37. M. Hohmann and A. Schärer, Post-Newtonian parameters γ𝛾\gammaitalic_γ and β𝛽\betaitalic_β of scalar-tensor gravity for a homogeneous gravitating sphere, Phys. Rev. D96, 104026 (2017), arXiv:1708.07851 [gr-qc] .
  38. A. Golovnev and T. Koivisto, Cosmological perturbations in modified teleparallel gravity models, JCAP 1811 (11), 012, arXiv:1808.05565 [gr-qc] .
  39. A. Golovnev and M.-J. Guzmán, Foundational issues in f(T) gravity theory, Int. J. Geom. Meth. Mod. Phys. 18, 2140007 (2021), arXiv:2012.14408 [gr-qc] .
  40. M. Blagojević and J. M. Nester, Local symmetries and physical degrees of freedom in f⁢(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity: a Dirac Hamiltonian constraint analysis, Phys. Rev. D 102, 064025 (2020), arXiv:2006.15303 [gr-qc] .
  41. M. J. Guzmán and R. Ferraro, Degrees of freedom and Hamiltonian formalism for f⁢(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity, Int. J. Mod. Phys. A 35, 2040022 (2020), arXiv:1910.03100 [gr-qc] .
  42. J. Beltrán Jiménez and K. F. Dialektopoulos, Non-Linear Obstructions for Consistent New General Relativity, JCAP 01, 018, arXiv:1907.10038 [gr-qc] .
  43. A. Golovnev and M.-J. Guzman, Nontrivial Minkowski backgrounds in f⁢(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity, Phys. Rev. D 103, 044009 (2021), arXiv:2012.00696 [gr-qc] .
  44. M. Li and H. Rao, Irregular universe in the Nieh-Yan modified teleparallel gravity, Phys. Lett. B 841, 137929 (2023), arXiv:2301.02847 [gr-qc] .
  45. G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10, 363 (1974).
  46. T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys. 126, 511 (2011), arXiv:1105.5723 [hep-th] .
  47. T. Kobayashi, Horndeski theory and beyond: a review, Rept. Prog. Phys. 82, 086901 (2019), arXiv:1901.07183 [gr-qc] .
  48. S. Bahamonde, K. F. Dialektopoulos, and J. L. Said, Can Horndeski Theory be recast using Teleparallel Gravity?, Phys. Rev. D100, 064018 (2019), arXiv:1904.10791 [gr-qc] .
  49. K. Flathmann and M. Hohmann, Post-Newtonian limit of generalized symmetric teleparallel gravity, Phys. Rev. D103, 044030 (2021), arXiv:2012.12875 [gr-qc] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube