Papers
Topics
Authors
Recent
2000 character limit reached

Brownian motion conditioned to have restricted $L_2$-norm (2312.12982v2)

Published 20 Dec 2023 in math.PR

Abstract: We condition a Brownian motion on having an atypically small $L_2$-norm on a long time interval. The obtained limiting process is a non-stationary Ornstein-Uhlenbeck process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. P. Billingsley. Convergence of probability measures. Wiley, New York, 1968.
  2. A. N. Borodin and P. Salminen. Handbook of Brownian motion—facts and formulae. Probability and its Applications. Birkhäuser Verlag, Basel, 1996.
  3. J. L. Doob. Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France, 85:431–458, 1957.
  4. Exact L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT small balls of Gaussian processes. J. Theoret. Probab., 17(2):503–520, 2004.
  5. I. Karatzas. On a stochastic representation for the principal eigenvalue of a second-order differential equation. Stochastics, 3, 1980.
  6. F. B. Knight. Brownian local times and taboo processes. Trans. Amer. Math. Soc., 143:173–185, 1969.
  7. M. Kolb and M. Savov. Transience and recurrence of a Brownian path with limited local time. Ann. Probab., 44(6):4083–4132, 2016.
  8. M. A. Lifshits. On the lower tail probabilities of some random series. Ann. Probab., 25(1):424–442, 1997.
  9. W. V. Li and W. Linde. Small ball problems for non-centered Gaussian measures. Probab. Math. Statist., 14(2):231–251, 1993.
  10. M. Lifshits and E. Setterqvist. Energy of taut strings accompanying Wiener process. Stochastic Process. Appl., 125(2):401–427, 2015.
  11. A. Nazarov and Y. Petrova. L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-small ball asymptotics for Gaussian random functions: a survey. Probab. Surv., 20:608–663, 2023.
  12. J. Rosen and B. Simon. Fluctuations in p⁢(ϕ)1𝑝subscriptitalic-ϕ1p(\phi)_{1}italic_p ( italic_ϕ ) start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT processes. Ann.Probab., 4(2):155–174, 1976.
  13. Limiting laws associated with Brownian motion perturbed by normalized exponential weights. I. Studia Sci. Math. Hungar., 43(2):171–246, 2006.
  14. W. Whitt. Weak convergence of probability measures on the function space C⁢[0,∞)𝐶0C[0,\,\infty)italic_C [ 0 , ∞ ). Ann. Math. Statist., 41:939–944, 1970.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.