Gravitational waves from supercooled phase transitions: dimensional transmutation meets dimensional reduction (2312.12413v2)
Abstract: Models with radiative symmetry breaking typically feature strongly supercooled first-order phase transitions, which result in an observable stochastic gravitational wave background. In this work, we analyse the role of higher order thermal corrections for these transitions, applying high-temperature dimensional reduction to a theory with dimensional transmutation. In particular, we study to what extent high-temperature effective field theories (3D EFT) can be used. We find that despite significant supercooling down from the critical temperature, the high-temperature expansion for the bubble nucleation rate can be applied using the 3D EFT framework, and we point out challenges in the EFT description. We compare our findings to previous studies, and find that the next-to-leading order corrections obtained in this work have a significant effect on the predictions for GW observables, motivating a further exploration of higher order thermal effects.
- L. Randall and G. Servant, “Gravitational waves from warped spacetime,” JHEP 05 (2007) 054, arXiv:hep-ph/0607158 [hep-ph].
- T. Konstandin, G. Nardini, and M. Quiros, “Gravitational Backreaction Effects on the Holographic Phase Transition,” Phys. Rev. D82 (2010) 083513, arXiv:1007.1468 [hep-ph].
- T. Konstandin and G. Servant, “Cosmological Consequences of Nearly Conformal Dynamics at the TeV scale,” JCAP 1112 (2011) 009, arXiv:1104.4791 [hep-ph].
- T. Hambye and A. Strumia, “Dynamical generation of the weak and Dark Matter scale,” Phys. Rev. D88 (2013) 055022, arXiv:1306.2329 [hep-ph].
- J. Jaeckel, V. V. Khoze, and M. Spannowsky, “Hearing the signal of dark sectors with gravitational wave detectors,” Phys. Rev. D94 no. 10, (2016) 103519, arXiv:1602.03901 [hep-ph].
- J. Ellis, M. Lewicki, J. M. No, and V. Vaskonen, “Gravitational wave energy budget in strongly supercooled phase transitions,” JCAP 06 (2019) 024, arXiv:1903.09642 [hep-ph].
- J. Ellis, M. Lewicki, and V. Vaskonen, “Updated predictions for gravitational waves produced in a strongly supercooled phase transition,” JCAP 11 (2020) 020, arXiv:2007.15586 [astro-ph.CO].
- M. Lewicki and V. Vaskonen, “Gravitational wave spectra from strongly supercooled phase transitions,” Eur. Phys. J. C 80 no. 11, (2020) 1003, arXiv:2007.04967 [astro-ph.CO].
- M. Lewicki and V. Vaskonen, “Gravitational waves from colliding vacuum bubbles in gauge theories,” Eur. Phys. J. C 81 no. 5, (2021) 437, arXiv:2012.07826 [astro-ph.CO]. [Erratum: Eur.Phys.J.C 81, 1077 (2021)].
- M. Lewicki and V. Vaskonen, “Gravitational waves from bubble collisions and fluid motion in strongly supercooled phase transitions,” arXiv:2208.11697 [astro-ph.CO].
- M. Kierkla, A. Karam, and B. Świeżewska, “Conformal model for gravitational waves and dark matter: A status update,” arXiv:2210.07075 [astro-ph.CO].
- K. Hashino, M. Kakizaki, S. Kanemura, and T. Matsui, “Synergy between measurements of gravitational waves and the triple-Higgs coupling in probing the first-order electroweak phase transition,” Phys. Rev. D94 no. 1, (2016) 015005, arXiv:1604.02069 [hep-ph].
- R. Jinno and M. Takimoto, “Probing a classically conformal B-L model with gravitational waves,” Phys. Rev. D95 no. 1, (2017) 015020, arXiv:1604.05035 [hep-ph].
- L. Marzola, A. Racioppi, and V. Vaskonen, “Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model,” Eur. Phys. J. C77 no. 7, (2017) 484, arXiv:1704.01034 [hep-ph].
- K. Hashino, M. Kakizaki, S. Kanemura, P. Ko, and T. Matsui, “Gravitational waves from first order electroweak phase transition in models with the U(1)X𝑋{}_{X}start_FLOATSUBSCRIPT italic_X end_FLOATSUBSCRIPT gauge symmetry,” JHEP 06 (2018) 088, arXiv:1802.02947 [hep-ph].
- I. Baldes and C. Garcia-Cely, “Strong gravitational radiation from a simple dark matter model,” JHEP 05 (2019) 190, arXiv:1809.01198 [hep-ph].
- T. Prokopec, J. Rezacek, and B. Świeżewska, “Gravitational waves from conformal symmetry breaking,” JCAP 02 (2019) 009, arXiv:1809.11129 [hep-ph].
- C. Marzo, L. Marzola, and V. Vaskonen, “Phase transition and vacuum stability in the classically conformal B–L model,” Eur. Phys. J. C 79 no. 7, (2019) 601, arXiv:1811.11169 [hep-ph].
- A. Mohamadnejad, “Gravitational waves from scale-invariant vector dark matter model: Probing below the neutrino-floor,” Eur. Phys. J. C 80 no. 3, (2020) 197, arXiv:1907.08899 [hep-ph].
- Z. Kang and J. Zhu, “Scale-genesis by Dark Matter and Its Gravitational Wave Signal,” Phys. Rev. D 102 no. 5, (2020) 053011, arXiv:2003.02465 [hep-ph].
- A. Mohamadnejad, “Electroweak phase transition and gravitational waves in a two-component dark matter model,” JHEP 03 (2022) 188, arXiv:2111.04342 [hep-ph].
- A. Dasgupta, P. S. B. Dev, A. Ghoshal, and A. Mazumdar, “Gravitational Wave Pathway to Testable Leptogenesis,” arXiv:2206.07032 [hep-ph].
- LISA Collaboration, P. Amaro-Seoane et al., “Laser Interferometer Space Antenna,” arXiv:1702.00786 [astro-ph.IM].
- S. Kawamura et al., “The Japanese space gravitational wave antenna: DECIGO,” Class. Quant. Grav. 28 (2011) 094011.
- G. Harry, P. Fritschel, D. Shaddock, W. Folkner, and E. Phinney, “Laser interferometry for the big bang observer,” Class. Quant. Grav. 23 (2006) 4887–4894. [Erratum: Class.Quant.Grav. 23, 7361 (2006)].
- W.-H. Ruan, Z.-K. Guo, R.-G. Cai, and Y.-Z. Zhang, “Taiji program: Gravitational-wave sources,” Int. J. Mod. Phys. A 35 no. 17, (2020) 2050075, arXiv:1807.09495 [gr-qc].
- O. Gould and T. V. I. Tenkanen, “On the perturbative expansion at high temperature and implications for cosmological phase transitions,” JHEP 06 (2021) 069, arXiv:2104.04399 [hep-ph].
- D. Croon, O. Gould, P. Schicho, T. V. I. Tenkanen, and G. White, “Theoretical uncertainties for cosmological first-order phase transitions,” JHEP 04 (2021) 055, arXiv:2009.10080 [hep-ph].
- J. I. Kapusta, “Quantum Chromodynamics at High Temperature,” Nucl. Phys. B 148 (1979) 461–498.
- R. R. Parwani, “Resummation in a hot scalar field theory,” Phys. Rev. D45 (1992) 4695, arXiv:hep-ph/9204216 [hep-ph]. [Erratum: Phys. Rev.D48,5965(1993)].
- P. B. Arnold and O. Espinosa, “The Effective potential and first order phase transitions: Beyond leading-order,” Phys. Rev. D47 (1993) 3546, arXiv:hep-ph/9212235 [hep-ph]. [Erratum: Phys. Rev.D50,6662(1994)].
- P. H. Ginsparg, “First Order and Second Order Phase Transitions in Gauge Theories at Finite Temperature,” Nucl. Phys. B 170 (1980) 388–408.
- T. Appelquist and R. D. Pisarski, “High-Temperature Yang-Mills Theories and Three-Dimensional Quantum Chromodynamics,” Phys. Rev. D 23 (1981) 2305.
- K. Kajantie, M. Laine, K. Rummukainen, and M. E. Shaposhnikov, “Generic rules for high temperature dimensional reduction and their application to the standard model,” Nucl. Phys. B 458 (1996) 90–136, arXiv:hep-ph/9508379.
- E. Braaten and A. Nieto, “Effective field theory approach to high temperature thermodynamics,” Phys. Rev. D 51 (1995) 6990–7006, arXiv:hep-ph/9501375.
- O. Gould and C. Xie, “Higher orders for cosmological phase transitions: a global study in a Yukawa model,” arXiv:2310.02308 [hep-ph].
- A. Ekstedt, P. Schicho, and T. V. I. Tenkanen, “DRalgo: A package for effective field theory approach for thermal phase transitions,” Comput. Phys. Commun. 288 (2023) 108725, arXiv:2205.08815 [hep-ph].
- O. Gould and J. Hirvonen, “Effective field theory approach to thermal bubble nucleation,” Phys. Rev. D 104 no. 9, (2021) 096015, arXiv:2108.04377 [hep-ph].
- J. Löfgren, M. J. Ramsey-Musolf, P. Schicho, and T. V. I. Tenkanen, “Nucleation at Finite Temperature: A Gauge-Invariant Perturbative Framework,” Phys. Rev. Lett. 130 no. 25, (2023) 251801, arXiv:2112.05472 [hep-ph].
- J. Hirvonen, J. Löfgren, M. J. Ramsey-Musolf, P. Schicho, and T. V. I. Tenkanen, “Computing the gauge-invariant bubble nucleation rate in finite temperature effective field theory,” JHEP 07 (2022) 135, arXiv:2112.08912 [hep-ph].
- P. Schicho, T. V. I. Tenkanen, and G. White, “Combining thermal resummation and gauge invariance for electroweak phase transition,” arXiv:2203.04284 [hep-ph].
- A. Ekstedt, O. Gould, and J. Löfgren, “Radiative first-order phase transitions to next-to-next-to-leading order,” Phys. Rev. D 106 no. 3, (2022) 036012, arXiv:2205.07241 [hep-ph].
- J. Löfgren, “Stop comparing resummation methods,” J. Phys. G 50 no. 12, (2023) 125008, arXiv:2301.05197 [hep-ph].
- O. Gould and T. V. I. Tenkanen, “Perturbative effective field theory expansions for cosmological phase transitions,” arXiv:2309.01672 [hep-ph].
- J. Hirvonen, “Intuitive method for constructing effective field theories,” arXiv:2205.02687 [hep-ph].
- C. D. Carone and R. Ramos, “Classical scale-invariance, the electroweak scale and vector dark matter,” Phys. Rev. D88 (2013) 055020, arXiv:1307.8428 [hep-ph].
- A. Gonstal, “Prospects of detecting stochastic gravitational-wave background with the laser interferometer space antenna,” Master’s thesis, University of Warsaw, 2023.
- T. Matsubara, “A New approach to quantum statistical mechanics,” Prog. Theor. Phys. 14 (1955) 351–378.
- J. I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2011.
- Springer, 2016. arXiv:1701.01554 [hep-ph].
- L. Dolan and R. Jackiw, “Symmetry Behavior at Finite Temperature,” Phys. Rev. D 9 (1974) 3320–3341.
- S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of Spontaneous Symmetry Breaking,” Phys.Rev. D7 (1973) 1888–1910.
- J. Ellis, M. Lewicki, and J. M. No, “On the Maximal Strength of a First-Order Electroweak Phase Transition and its Gravitational Wave Signal,” JCAP 04 (2019) 003, arXiv:1809.08242 [hep-ph].
- P. Athron, C. Balázs, and L. Morris, “Supercool subtleties of cosmological phase transitions,” JCAP 03 (2023) 006, arXiv:2212.07559 [hep-ph].
- Y. Gouttenoire, R. Jinno, and F. Sala, “Friction pressure on relativistic bubble walls,” JHEP 05 (2022) 004, arXiv:2112.07686 [hep-ph].
- I. Ghisoiu, J. Moller, and Y. Schroder, “Debye screening mass of hot Yang-Mills theory to three-loop order,” JHEP 11 (2015) 121, arXiv:1509.08727 [hep-ph].
- N. Levi, T. Opferkuch, and D. Redigolo, “The supercooling window at weak and strong coupling,” JHEP 02 (2023) 125, arXiv:2212.08085 [hep-ph].
- A. Salvio, “Model-independent radiative symmetry breaking and gravitational waves,” JCAP 04 (2023) 051, arXiv:2302.10212 [hep-ph].
- A. Salvio, “Supercooling in Radiative Symmetry Breaking: Theory Extensions, Gravitational Wave Detection and Primordial Black Holes,” arXiv:2307.04694 [hep-ph].
- V. V. Khoze, C. McCabe, and G. Ro, “Higgs vacuum stability from the dark matter portal,” JHEP 08 (2014) 026, arXiv:1403.4953 [hep-ph].
- G. M. Pelaggi, “Predictions of a model of weak scale from dynamical breaking of scale invariance,” Nucl. Phys. B 893 (2015) 443–458, arXiv:1406.4104 [hep-ph].
- A. Karam and K. Tamvakis, “Dark matter and neutrino masses from a scale-invariant multi-Higgs portal,” Phys. Rev. D92 no. 7, (2015) 075010, arXiv:1508.03031 [hep-ph].
- V. V. Khoze and A. D. Plascencia, “Dark Matter and Leptogenesis Linked by Classical Scale Invariance,” JHEP 11 (2016) 025, arXiv:1605.06834 [hep-ph].
- L. Chataignier, T. Prokopec, M. G. Schmidt, and B. Świeżewska, “Single-scale Renormalisation Group Improvement of Multi-scale Effective Potentials,” JHEP 03 (2018) 014, arXiv:1801.05258 [hep-ph].
- T. Hambye, A. Strumia, and D. Teresi, “Super-cool Dark Matter,” JHEP 08 (2018) 188, arXiv:1805.01473 [hep-ph].
- D. Marfatia and P.-Y. Tseng, “Gravitational wave signals of dark matter freeze-out,” JHEP 02 (2021) 022, arXiv:2006.07313 [hep-ph].
- P. M. Schicho, T. V. I. Tenkanen, and J. Österman, “Robust approach to thermal resummation: Standard Model meets a singlet,” JHEP 06 (2021) 130, arXiv:2102.11145 [hep-ph].
- D. Croon, V. Sanz, and G. White, “Model Discrimination in Gravitational Wave spectra from Dark Phase Transitions,” arXiv:1806.02332 [hep-ph].
- A. Ekstedt and J. Löfgren, “A Critical Look at the Electroweak Phase Transition,” JHEP 12 (2020) 136, arXiv:2006.12614 [hep-ph].
- G. D. Moore and K. Rummukainen, “Electroweak bubble nucleation, nonperturbatively,” Phys. Rev. D 63 (2001) 045002, arXiv:hep-ph/0009132.
- A. Ekstedt, “Convergence of the nucleation rate for first-order phase transitions,” Phys. Rev. D 106 no. 9, (2022) 095026, arXiv:2205.05145 [hep-ph].
- O. Gould, S. Güyer, and K. Rummukainen, “First-order electroweak phase transitions: A nonperturbative update,” Phys. Rev. D 106 no. 11, (2022) 114507, arXiv:2205.07238 [hep-lat].
- K. Farakos, K. Kajantie, K. Rummukainen, and M. E. Shaposhnikov, “3-D physics and the electroweak phase transition: Perturbation theory,” Nucl. Phys. B 425 (1994) 67–109, arXiv:hep-ph/9404201.
- A. Ekstedt, “Higher-order corrections to the bubble-nucleation rate at finite temperature,” Eur. Phys. J. C 82 no. 2, (2022) 173, arXiv:2104.11804 [hep-ph].
- A. Ekstedt, “Bubble nucleation to all orders,” JHEP 08 (2022) 115, arXiv:2201.07331 [hep-ph].
- G. Barenboim and W.-I. Park, “Gravitational waves from first order phase transitions as a probe of an early matter domination era and its inverse problem,” Phys. Lett. B 759 (2016) 430–438, arXiv:1605.03781 [astro-ph.CO].
- R. Allahverdi et al., “The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe,” arXiv:2006.16182 [astro-ph.CO].
- S. Iso, P. D. Serpico, and K. Shimada, “QCD-Electroweak First-Order Phase Transition in a Supercooled Universe,” Phys. Rev. Lett. 119 no. 14, (2017) 141301, arXiv:1704.04955 [hep-ph].
- B. von Harling and G. Servant, “QCD-induced Electroweak Phase Transition,” JHEP 01 (2018) 159, arXiv:1711.11554 [hep-ph].
- L. Sagunski, P. Schicho, and D. Schmitt, “Supercool exit: Gravitational waves from QCD-triggered conformal symmetry breaking,” Phys. Rev. D 107 no. 12, (2023) 123512, arXiv:2303.02450 [hep-ph].
- Y. Gouttenoire and T. Volansky, “Primordial Black Holes from Supercooled Phase Transitions,” arXiv:2305.04942 [hep-ph].
- M. Lewicki, P. Toczek, and V. Vaskonen, “Primordial black holes from strong first-order phase transitions,” JHEP 09 (2023) 092, arXiv:2305.04924 [astro-ph.CO].
- A. Ekstedt, O. Gould, and J. Hirvonen, “BubbleDet: A Python package to compute functional determinants for bubble nucleation,” arXiv:2308.15652 [hep-ph].
- L. S. Friedrich, M. J. Ramsey-Musolf, T. V. I. Tenkanen, and V. Q. Tran, “Addressing the Gravitational Wave - Collider Inverse Problem,” arXiv:2203.05889 [hep-ph].
- L. Niemi, H. H. Patel, M. J. Ramsey-Musolf, T. V. I. Tenkanen, and D. J. Weir, “Electroweak phase transition in the real triplet extension of the SM: Dimensional reduction,” Phys. Rev. D 100 no. 3, (2019) 035002, arXiv:1802.10500 [hep-ph].
- R. M. Fonseca, “GroupMath: A Mathematica package for group theory calculations,” Comput. Phys. Commun. 267 (2021) 108085, arXiv:2011.01764 [hep-th].
- T. Brauner, T. V. I. Tenkanen, A. Tranberg, A. Vuorinen, and D. J. Weir, “Dimensional reduction of the Standard Model coupled to a new singlet scalar field,” JHEP 03 (2017) 007, arXiv:1609.06230 [hep-ph].
- J. O. Andersen, T. Gorda, A. Helset, L. Niemi, T. V. I. Tenkanen, A. Tranberg, A. Vuorinen, and D. J. Weir, “Nonperturbative Analysis of the Electroweak Phase Transition in the Two Higgs Doublet Model,” Phys. Rev. Lett. 121 no. 19, (2018) 191802, arXiv:1711.09849 [hep-ph].
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.