Papers
Topics
Authors
Recent
2000 character limit reached

Introducing the concept of the Widom line in the QCD phase diagram (2312.12401v2)

Published 19 Dec 2023 in hep-ph and nucl-th

Abstract: Critical phenomena emerging from the critical end point of a first-order transition are ubiquitous in nature. Here we bring the concept of a supercritical crossover, the Widom line, initially developed in the context of fluids, into the interacting matter described by quantum chromodynamics (QCD). We show that the existence of the putative critical end point between hadron gas and quark-gluon plasma in the temperature versus chemical potential of the QCD phase diagram implies the existence of a Widom line emerging from it in the supercritical region. We survey the thermodynamic anomalies already identified in simplified theoretical models of QCD exhibiting a critical end point, to show that they can be interpreted in terms of a Widom line. Then we suggest possible directions where the Widom line concept could provide new light on the QCD phase diagram.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. M. Stephanov,  QCD Phase Diagram and the Critical Point , Prog. Theor. Phys. Supplement 153, 139 (2004).
  2. J. B. Kogut and M. A. Stephanov, The phases of quantum chromodynamics: From confinement to extreme environments, Vol. 21 (Cambridge University Press, 2004).
  3. P. F. McMillan and H. E. Stanley, Fluid phases: Going supercritical, Nat Phys 6, 479 (2010).
  4. G. Franzese and H. E. Stanley, The widom line of supercooled water, Journal of Physics: Condensed Matter 19, 205126 (2007).
  5. D. Corradini, M. Rovere, and P. Gallo, Widom line and dynamical crossovers as routes to understand supercritical water, Nature Communications 5, 5806 (2014).
  6. P. Linstrom and W. Mallard, The NIST Chemistry WebBook: A Chemical Data Resource on the Internet, Journal of Chemical and Engineering Data 10.18434/T4D303 (2001).
  7. K. Rajagopal and F. Wilczek, Static and dynamic critical phenomena at a second order qcd phase transition, Nuclear Physics B 399, 395 (1993).
  8. J. Berges and K. Rajagopal, Color superconductivity and chiral symmetry restoration at non-zero baryon density and temperature, Nuclear Physics B 538, 215 (1999).
  9. F. Karsch, E. Laermann, and C. Schmidt, The chiral critical point in 3-flavour QCD, Physics Letters B 520, 41 (2001).
  10. P. de Forcrand and O. Philipsen, The qcd phase diagram for three degenerate flavors and small baryon density, Nuclear Physics B 673, 170 (2003).
  11. O. DeWolfe, S. S. Gubser, and C. Rosen, A holographic critical point, Phys. Rev. D 83, 086005 (2011).
  12. J. Knaute and B. Kämpfer, Holographic entanglement entropy in the qcd phase diagram with a critical point, Phys. Rev. D 96, 106003 (2017).
  13. M. Stephanov, K. Rajagopal, and E. Shuryak, Signatures of the Tricritical Point in QCD, Phys. Rev. Lett. 81, 4816 (1998).
  14. M. Stephanov, K. Rajagopal, and E. Shuryak, Event-by-event fluctuations in heavy ion collisions and the qcd critical point, Phys. Rev. D 60, 114028 (1999).
  15. W. Busza, K. Rajagopal, and W. van der Schee, Heavy ion collisions: The big picture and the big questions, Annual Review of Nuclear and Particle Science 68, 339 (2018).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.