Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

From local nets to Euler elements (2312.12182v1)

Published 19 Dec 2023 in math.OA, math-ph, math.MP, and math.RT

Abstract: Various aspects of the geometric setting of Algebraic Quantum Field Theory (AQFT) models related to representations of the Poincar\'e group can be studied for general Lie groups, whose Lie algebra contains an Euler element, i.e., ad h is diagonalizable with eigenvalues in {-1,0,1}. This has been explored by the authors and their collaborators during recent years. A key property in this construction is the Bisognano-Wichmann property (thermal property for wedge region algebras) concerning the geometric implementation of modular groups of local algebras. In the present paper we prove that under a natural regularity condition, geometrically implemented modular groups arising from the Bisognano-Wichmann property, are always generated by Euler elements. We also show the converse, namely that in presence of Euler elements and the Bisognano-Wichmann property, regularity and localizability hold in a quite general setting. Lastly we show that, in this generalized AQFT, in the vacuum representation, under analogous assumptions (regularity and Bisognano-Wichmann), the von Neumann algebras associated to wedge regions are type III_1 factors, a property that is well-known in the AQFT context.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.