Incoherent ${\rm J}/ψ$ production at large $|t|$ identifies the onset of saturation at the LHC (2312.11320v2)
Abstract: We predict that the onset of gluon saturation can be uniquely identified using incoherent ${\rm J}/\psi$ production in Pb$\unicode{x2013}$Pb collisions at currently accessible energies of the LHC. The diffractive incoherent photo-production of a ${\rm J}/\psi$ vector meson off a hadron provides information on the partonic structure of the hadron. Within the Good-Walker approach it specifically measures the variance over possible target configurations of the hadronic colour field. For this process then, gluon saturation sets in when the cross section reaches a maximum, as a function of the centre-of-mass energy of the photon-hadron system ($W$), and then decreases. We benchmark the energy-dependent hot-spot model against data from HERA and the LHC and demonstrate a good description of the available data. We show that the study of the energy dependence of the incoherent production of ${\rm J}/\psi$ allows us to pinpoint the onset of saturation effects by selecting the region of Mandelstam-$t$ around 1 GeV$2$ where the contribution of hot spots is dominant. We predict the onset of saturation in a Pb target to occur for $W$ around a few hundred GeV. This can be measured with current data in ultra-peripheral Pb$\unicode{x2013}$Pb collisions at the LHC.
- doi:10.1016/0370-1573(83)90022-4.
- doi:10.1016/0550-3213(90)90173-B.
- arXiv:1401.4866, doi:10.1016/j.ppnp.2014.01.004.
- arXiv:1506.06042, doi:10.1140/epjc/s10052-015-3710-4.
- doi:10.1007/BF01555742.
- arXiv:hep-ph/0606272, doi:10.1103/PhysRevD.74.074016.
- arXiv:1308.3368, doi:10.1103/RevModPhys.86.1037.
- doi:10.1142/S0217751X15420129.
- arXiv:1910.10858, doi:10.1038/s42254-019-0107-6.
- arXiv:1212.1701, doi:10.1140/epja/i2016-16268-9.
- arXiv:1206.2913, doi:10.1088/0954-3899/39/7/075001.
- doi:10.1103/PhysRev.120.1857.
- doi:10.1103/PhysRevD.18.1696.
- arXiv:1603.04349, doi:10.1103/PhysRevLett.117.052301.
- arXiv:1804.06110, doi:10.1140/epjc/s10052-019-6826-0.
- arXiv:2106.12855, doi:10.1140/epjc/s10052-022-10774-3.
- arXiv:2206.05207, doi:10.1103/PhysRevD.106.074025.
- arXiv:2001.10705, doi:10.1088/1361-6633/aba347.
- arXiv:1608.07559, doi:10.1016/j.physletb.2016.12.063.
- arXiv:hep-ph/9607239, doi:10.1103/PhysRevLett.77.3736.
- arXiv:1711.01855, doi:10.1103/PhysRevC.97.024901.
- arXiv:1804.05508, doi:10.1016/j.nuclphysb.2018.07.010.
- arXiv:1811.06479, doi:10.1103/PhysRevD.99.034025.
- arXiv:1905.06759, doi:10.1016/j.nuclphysa.2019.06.009.
- arXiv:hep-ph/9902410, doi:10.1103/PhysRevD.60.014015.
- arXiv:hep-ph/9807513, doi:10.1103/PhysRevD.59.014017.
- arXiv:hep-ph/9405355, doi:10.1016/0370-2693(94)90314-X.
- arXiv:hep-ph/9605231, doi:10.1007/s002880050448.
- arXiv:hep-ph/0312172, doi:10.1103/PhysRevD.69.094013.
- arXiv:1304.5162, doi:10.1140/epjc/s10052-013-2466-y.
- arXiv:2005.14471, doi:10.1140/epjc/s10052-020-08587-3.
- arXiv:1406.7819, doi:10.1103/PhysRevLett.113.232504.
- arXiv:1809.03235, doi:10.1140/epjc/s10052-019-6816-2.
- arXiv:2304.12403.
- arXiv:1902.01339, doi:10.1140/epjc/s10052-019-7202-9.
- arXiv:1503.09177, doi:10.1007/JHEP09(2015)095.
- arXiv:2002.10897, doi:10.1007/JHEP06(2020)035.
- arXiv:2101.04623, doi:10.1016/j.physletb.2021.136280.
- arXiv:2305.06169.
- arXiv:2305.19060, doi:10.1007/JHEP10(2023)119.
- arXiv:2303.16984.
- arXiv:1703.02085, doi:10.1103/PhysRevD.95.114026.
- arXiv:0910.5831, doi:10.1007/JHEP05(2010)032.
- ALICE physics projections for a short oxygen-beam run at the LHC (2021). URL https://cds.cern.ch/record/2765973
- arXiv:hep-ph/0505023, doi:10.1016/j.physletb.2005.08.083.
- arXiv:2303.12052, doi:10.1103/PhysRevC.108.024904.
- arXiv:1812.06772, doi:10.23731/CYRM-2019-007.1159.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.