Papers
Topics
Authors
Recent
2000 character limit reached

Full three-loop Renormalisation of an abelian chiral Gauge Theory with non-anticommuting $γ_5$ in the BMHV Scheme

Published 18 Dec 2023 in hep-ph | (2312.11291v1)

Abstract: In this work we present a complete three-loop renormalisation of an abelian chiral gauge theory within the Breitenlohner-Maison/'t Hooft-Veltman (BMHV) scheme of dimensional regularisation (DReg). In this scheme the $\gamma_5$-matrix appearing in gauge interactions is a non-anticommuting object, leading to a breaking of gauge and BRST invariance. Employing an efficient method based on the quantum action principle, we obtain the complete three-loop counterterm action which serves both to render the theory finite and to restore gauge and BRST invariance. The UV singular counterterms involve not only higher order $\epsilon$-poles but also new counterterm structures emerging at the three-loop level for the first time; the finite symmetry-restoring counterterms are restricted to the same structures as at lower loop orders, just with different coefficients, aligning with our expectations. Both the singular and the finite counterterms include structures which cannot be obtained by the standard multiplicative renormalisation. Our results demonstrate that a rigorous treatment of chiral gauge theories with $\gamma_5$ defined in the BMHV scheme at the multi-loop level is possible and that the obtained counterterm action is suitable for computer implementations, allowing automated calculations without ambiguities caused by $\gamma_5$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. Gerard ’t Hooft and M.J.G. Veltman “Regularization and Renormalization of Gauge Fields” In Nucl. Phys. B 44, 1972, pp. 189–213 DOI: 10.1016/0550-3213(72)90279-9
  2. “Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter” In Nuovo Cim. B 12, 1972, pp. 20–26 DOI: 10.1007/BF02895558
  3. “Analytic renormalization via continuous space dimension” In Lett. Nuovo Cim. 4, 1972, pp. 329–332 DOI: 10.1007/BF02756527
  4. “Dimensional regularization, abnormal amplitudes and anomalies” In Nuovo Cim. A 17, 1973, pp. 578–586 DOI: 10.1007/BF02786835
  5. “Dimensional regularization and PCAC” In Nuovo Cim. A 18, 1973, pp. 94–104 DOI: 10.1007/BF02820839
  6. “Anomalies via dimensional regularization” In Nuovo Cim. A 19, 1974, pp. 219–224 DOI: 10.1007/BF02801848
  7. Michael S. Chanowitz, M. Furman and I. Hinchliffe “The Axial Current in Dimensional Regularization” In Nucl. Phys. B 159, 1979, pp. 225–243 DOI: 10.1016/0550-3213(79)90333-X
  8. T.L. Trueman “Spurious anomalies in dimensional renormalization” In Z. Phys. C 69, 1996, pp. 525–536 DOI: 10.1007/BF02907437
  9. F. Jegerlehner “Facts of life with gamma(5)” In Eur. Phys. J. C 18, 2001, pp. 673–679 DOI: 10.1007/s100520100573
  10. C. Gnendiger “To d𝑑{d}italic_d, or not to d𝑑{d}italic_d: recent developments and comparisons of regularization schemes” In Eur. Phys. J. C 77.7, 2017, pp. 471 DOI: 10.1140/epjc/s10052-017-5023-2
  11. “Dimensionally Renormalized Green’s Functions for Theories with Massless Particles. 1.” In Commun. Math. Phys. 52, 1977, pp. 39 DOI: 10.1007/BF01609070
  12. “Dimensionally Renormalized Green’s Functions for Theories with Massless Particles. 2.” In Commun. Math. Phys. 52, 1977, pp. 55 DOI: 10.1007/BF01609071
  13. “Dimensional Renormalization and the Action Principle” In Commun. Math. Phys. 52, 1977, pp. 11–38 DOI: 10.1007/BF01609069
  14. “Algebraic renormalization: Perturbative renormalization, symmetries and anomalies”, 1995 DOI: 10.1007/978-3-540-49192-7
  15. “Dimensional regularization and Breitenlohner-Maison/’t Hooft-Veltman scheme for γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT applied to chiral YM theories: full one-loop counterterm and RGE structure” In JHEP 08.08, 2020, pp. 024 DOI: 10.1007/JHEP08(2020)024
  16. “Two-loop application of the Breitenlohner-Maison/’t Hooft-Veltman scheme with non-anticommuting γ𝛾\gammaitalic_γ55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT: full renormalization and symmetry-restoring counterterms in an abelian chiral gauge theory” In JHEP 11, 2021, pp. 159 DOI: 10.1007/JHEP11(2021)159
  17. Hermès Bélusca-Maïto “Renormalisation group equations for BRST-restored chiral theory in dimensional renormalisation: application to two-loop chiral-QED” In JHEP 03, 2023, pp. 202 DOI: 10.1007/JHEP03(2023)202
  18. “Introduction to Renormalization Theory and Chiral Gauge Theories in Dimensional Regularization with Non-Anticommuting γ𝛾\gammaitalic_γ55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT” In Symmetry 15.3, 2023, pp. 622 DOI: 10.3390/sym15030622
  19. “Action principles, restoration of BRS symmetry and the renormalization group equation for chiral nonAbelian gauge theories in dimensional renormalization with a nonanticommuting gamma(5)” In Nucl. Phys. B 572, 2000, pp. 387–477 DOI: 10.1016/S0550-3213(99)00453-8
  20. Claudia Cornella, Ferruccio Feruglio and Luca Vecchi “Gauge invariance and finite counterterms in chiral gauge theories” In JHEP 02, 2023, pp. 244 DOI: 10.1007/JHEP02(2023)244
  21. D. Sanchez-Ruiz “BRS symmetry restoration of chiral Abelian Higgs-Kibble theory in dimensional renormalization with a nonanticommuting gamma(5)” In Phys. Rev. D 68, 2003, pp. 025009 DOI: 10.1103/PhysRevD.68.025009
  22. Christian Schubert “The Yukawa Model as an Example for Dimensional Renormalization With γ𝛾\gammaitalic_γ (5)” In Nucl. Phys. B 323, 1989, pp. 478–492 DOI: 10.1016/0550-3213(89)90153-3
  23. “Low-energy effective field theory below the electroweak scale: one-loop renormalization in the ’t Hooft-Veltman scheme”, 2023 arXiv:2310.13051 [hep-ph]
  24. “On γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT schemes and the interplay of SMEFT operators in the Higgs-gluon coupling”, 2023 arXiv:2310.18221 [hep-ph]
  25. Dirk Kreimer “The γ𝛾\gammaitalic_γ(5) Problem and Anomalies: A Clifford Algebra Approach” In Phys. Lett. B 237, 1990, pp. 59–62 DOI: 10.1016/0370-2693(90)90461-E
  26. J.G. Korner, D. Kreimer and K. Schilcher “A Practicable gamma(5) scheme in dimensional regularization” In Z. Phys. C 54, 1992, pp. 503–512 DOI: 10.1007/BF01559471
  27. Dirk Kreimer “The Role of gamma(5) in dimensional regularization”, 1993 arXiv:hep-ph/9401354
  28. “Four-loop strong coupling beta-function in the Standard Model” In Phys. Lett. B762, 2016, pp. 151–156 DOI: 10.1016/j.physletb.2016.09.007
  29. M.F. Zoller “Top-Yukawa effects on the β𝛽\betaitalic_β-function of the strong coupling in the SM at four-loop level” In JHEP 02, 2016, pp. 095 DOI: 10.1007/JHEP02(2016)095
  30. “Weyl Consistency Conditions and γ𝛾\gammaitalic_γ55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT” In Phys. Rev. Lett. 123.4, 2019, pp. 041602 DOI: 10.1103/PhysRevLett.123.041602
  31. “Gauge Coupling β𝛽\betaitalic_β Functions to Four-Loop Order in the Standard Model” In Phys. Rev. Lett. 124.7, 2020, pp. 071803 DOI: 10.1103/PhysRevLett.124.071803
  32. Joshua Davies, Florian Herren and Anders Eller Thomsen “General gauge-Yukawa-quartic β𝛽\betaitalic_β-functions at 4-3-2-loop order” In JHEP 01, 2022, pp. 051 DOI: 10.1007/JHEP01(2022)051
  33. Florian Herren “Higher-order β𝛽\betaitalic_β-functions in the Standard Model and beyond” In SciPost Phys. Proc. 7, 2022, pp. 029 DOI: 10.21468/SciPostPhysProc.7.029
  34. H. Osborn “Derivation of a Four-dimensional c𝑐citalic_c Theorem” In Phys. Lett. B 222, 1989, pp. 97–102 DOI: 10.1016/0370-2693(89)90729-6
  35. “Analogs for the c𝑐citalic_c Theorem for Four-dimensional Renormalizable Field Theories” In Nucl. Phys. B 343, 1990, pp. 647–688 DOI: 10.1016/0550-3213(90)90584-Z
  36. H. Osborn “Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories” In Nucl. Phys. B 363, 1991, pp. 486–526 DOI: 10.1016/0550-3213(91)80030-P
  37. “Constraints on RG Flow for Four Dimensional Quantum Field Theories” In Nucl. Phys. B 883, 2014, pp. 425–500 DOI: 10.1016/j.nuclphysb.2014.03.018
  38. Colin Poole and Anders Eller Thomsen “Constraints on 3- and 4-loop β𝛽\betaitalic_β-functions in a general four-dimensional Quantum Field Theory” In JHEP 09, 2019, pp. 055 DOI: 10.1007/JHEP09(2019)055
  39. Long Chen “An observation on Feynman diagrams with axial anomalous subgraphs in dimensional regularization with an anticommuting γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT”, 2023 arXiv:2304.13814 [hep-ph]
  40. Stephen L. Adler “Axial vector vertex in spinor electrodynamics” In Phys. Rev. 177, 1969, pp. 2426–2438 DOI: 10.1103/PhysRev.177.2426
  41. “A PCAC puzzle: π0→γ⁢γ→superscript𝜋0𝛾𝛾\pi^{0}\to\gamma\gammaitalic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT → italic_γ italic_γ in the σ𝜎\sigmaitalic_σ model” In Nuovo Cim. A 60, 1969, pp. 47–61 DOI: 10.1007/BF02823296
  42. Stephen L. Adler and William A. Bardeen “Absence of higher order corrections in the anomalous axial vector divergence equation” In Phys. Rev. 182, 1969, pp. 1517–1536 DOI: 10.1103/PhysRev.182.1517
  43. A.M. Bruque, A.L. Cherchiglia and M. Pérez-Victoria “Dimensional regularization vs methods in fixed dimension with and without γ5subscript𝛾5\gamma_{5}italic_γ start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT” In JHEP 08, 2018, pp. 109 DOI: 10.1007/JHEP08(2018)109
  44. “Two loop mixing of dimension five flavor changing operators” In Phys. Lett. B 344, 1995, pp. 308–318 DOI: 10.1016/0370-2693(94)01553-O
  45. Konstantin G. Chetyrkin, Mikolaj Misiak and Manfred Munz “Beta functions and anomalous dimensions up to three loops” In Nucl. Phys. B 518, 1998, pp. 473–494 DOI: 10.1016/S0550-3213(98)00122-9
  46. “Three-loop MSSM Higgs-boson mass predictions and regularization by dimensional reduction” In Nucl. Phys. B 935, 2018, pp. 1–16 DOI: 10.1016/j.nuclphysb.2018.08.005
  47. S. Wolfram “Mathematica 12.0” Published by Wolfram Research Inc., 2019 URL: https://www.wolfram.com
  48. Thomas Hahn “Generating Feynman diagrams and amplitudes with FeynArts 3” In Comput. Phys. Commun. 140, 2001, pp. 418–431 DOI: 10.1016/S0010-4655(01)00290-9
  49. R. Mertig, M. Bohm and Ansgar Denner “FEYN CALC: Computer algebraic calculation of Feynman amplitudes” In Comput. Phys. Commun. 64, 1991, pp. 345–359 DOI: 10.1016/0010-4655(91)90130-D
  50. Vladyslav Shtabovenko, Rolf Mertig and Frederik Orellana “New Developments in FeynCalc 9.0” In Comput. Phys. Commun. 207, 2016, pp. 432–444 DOI: 10.1016/j.cpc.2016.06.008
  51. Vladyslav Shtabovenko, Rolf Mertig and Frederik Orellana “FeynCalc 9.3: New features and improvements” In Comput. Phys. Commun. 256, 2020, pp. 107478 DOI: 10.1016/j.cpc.2020.107478
  52. Vladyslav Shtabovenko “FeynCalc goes multiloop” In J. Phys. Conf. Ser. 2438.1, 2023, pp. 012140 DOI: 10.1088/1742-6596/2438/1/012140
  53. Vladyslav Shtabovenko “FeynHelpers: Connecting FeynCalc to FIRE and Package-X” In Comput. Phys. Commun. 218, 2017, pp. 48–65 DOI: 10.1016/j.cpc.2017.04.014
  54. “FIRE6: Feynman Integral REduction with Modular Arithmetic” In Comput. Phys. Commun. 247, 2020, pp. 106877 DOI: 10.1016/j.cpc.2019.106877
  55. “The five-loop beta function of Yang-Mills theory with fermions” In JHEP 02, 2017, pp. 090 DOI: 10.1007/JHEP02(2017)090
  56. “The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge” In JHEP 10, 2017, pp. 166 DOI: 10.1007/JHEP10(2017)166
  57. “Two-Loop Rational Terms in Yang-Mills Theories” In JHEP 10, 2020, pp. 016 DOI: 10.1007/JHEP10(2020)016
  58. “High-precision epsilon expansions of single-mass-scale four-loop vacuum bubbles” In JHEP 06, 2005, pp. 051 DOI: 10.1088/1126-6708/2005/06/051
  59. Stephen P. Martin and David G. Robertson “Evaluation of the general 3-loop vacuum Feynman integral” In Phys. Rev. D 95.1, 2017, pp. 016008 DOI: 10.1103/PhysRevD.95.016008
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.