Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalised Adaptive Cross Approximation for Convolution Quadrature based Boundary Element Formulation

Published 18 Dec 2023 in math.NA and cs.NA | (2312.11219v4)

Abstract: The acoustic wave equation is solved in time domain with a boundary element formulation. The time discretisation is performed with the generalised convolution quadrature method and for the spatial approximation standard lowest order elements are used. Collocation and Galerkin methods are applied. In the interest of increasing the efficiency of the boundary element method, a low-rank approximation such as the adaptive cross approximation (ACA) is carried out. We discuss about a generalisation of the ACA to approximate a three-dimensional array of data, i.e., usual boundary element matrices at several complex frequencies. This method is used within the generalised convolution quadrature (gCQ) method to obtain a real time domain formulation. The behaviour of the proposed method is studied with three examples, a unit cube, a unit cube with a reentrant corner, and a unit ball. The properties of the method are preserved in the data sparse representation and a significant reduction in storage is obtained.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. A. Aimi and M. Diligenti. A new space-time energetic formulation for wave propagation analysis in layered media by BEMs. Int. J. Numer. Methods. Engrg., 75(9):1102–1132, 2008.
  2. A stable 3d energetic Galerkin BEM approach for wave propagation interior problems. Eng. Anal. Bound. Elem., 36(12):1756–1765, 2012. ISSN 0955-7997. http://dx.doi.org/10.1016/j.enganabound.2012.06.003. URL http://www.sciencedirect.com/science/article/pii/S0955799712001361.
  3. A. Bamberger and T. Ha-Duong. Formulation variationelle espace-temps pour le calcul par potentiel retardé d’une onde acoustique. Math. Meth. Appl. Sci., 8:405–435 and 598–608, 1986.
  4. L. Banjai and M. Kachanovska. Fast convolution quadrature for the wave equation in three dimensions. J. Comput. Phys., 279:103–126, 2014. ISSN 0021-9991. https://doi.org/10.1016/j.jcp.2014.08.049. URL https://www.sciencedirect.com/science/article/pii/S0021999114006251.
  5. L. Banjai and S. Sauter. Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal., 47(1):227–249, 2008.
  6. M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, volume 63 of Lecture Notes in Computational Science and Engineering. Springer-Verlag, 2008.
  7. M. Bebendorf. Adaptive cross approximation of multivariate functions. Constr. Approx., 34(2):149–179, 2011. 10.1007/s00365-010-9103-x. URL https://doi.org/10.1007/s00365-010-9103-x.
  8. M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices. Computing, 70:1–24, 2003.
  9. An equi-directional generalization of adaptive cross approximation for higher-order tensors. Appl. Num. Math., 74:1–16, 2013. ISSN 0168-9274. https://doi.org/10.1016/j.apnum.2013.08.001. URL http://www.sciencedirect.com/science/article/pii/S0168927413000950.
  10. M. Costabel. Time-dependent problems with the boundary integral equation method. In E. Stein, R. de Borst, and T. J. R. Hughes, editors, Encyclopedia of Computational Mechanics, volume 1, Fundamentals, chapter 25, pages 703–721. John Wiley & Sons, New York, Chichester, Weinheim, 2005.
  11. A direct formulation and numerical solution of the general transient elastodynamic problem, I. Aust. J. Math. Anal. Appl., 22(1):244–259, 1968.
  12. A multilinear singular value decomposition. SIAM J. Matrix Aanal. A., 21(4):1253–1278, 2000. 10.1137/S0895479896305696. URL https://doi.org/10.1137/S0895479896305696.
  13. Frequency extraction for bem matrices arising from the 3d scalar helmholtz equation. SIAM J. Sci. Comput., 44(5):B1282–B1311, 2022. 10.1137/20M1382957. URL https://doi.org/10.1137/20M1382957.
  14. M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal., 19(6):1260–1262, 1982.
  15. Fast evaluation of three-dimensional transient wave fields using diagonal translation operators. J. Comput. Phys., 146(1):157–180, 1998. 10.1006/jcph.1998.5908.
  16. S. Erichsen and S. A. Sauter. Efficient automatic quadrature in 3-d Galerkin BEM. Comput. Methods Appl. Mech. Engrg., 157(3–4):215–224, 1998.
  17. L. Greengard and V. Rokhlin. A new version of the Fast Multipole Method for the Laplace equation in three dimensions. Acta Num., 6:229–269, 1997.
  18. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, volume 25 of Applied Mathematics and Mechanics. North-Holland, Amsterdam New York Oxford, 1979.
  19. Generalized convolution quadrature based boundary element method for uncoupled thermoelasticity. Mech Syst Signal Pr, 150:107234, 2021. ISSN 0888-3270. https://doi.org/10.1016/j.ymssp.2020.107234. URL http://www.sciencedirect.com/science/article/pii/S0888327020306208.
  20. M. Lopez-Fernandez and S. Sauter. Generalized convolution quadrature with variable time stepping. IMA J. of Numer. Anal., 33(4):1156–1175, 2013. 10.1093/imanum/drs034.
  21. M. Lopez-Fernandez and S. Sauter. Generalized convolution quadrature with variable time stepping. part II: Algorithm and numerical results. Appl. Num. Math., 94:88–105, 2015.
  22. Generalized convolution quadrature based on Runge-Kutta methods. Numer. Math., 133(4):743–779, 2016. 10.1007/s00211-015-0761-2.
  23. C. Lubich. Convolution quadrature and discretized operational calculus. I. Numer. Math., 52(2):129–145, 1988a.
  24. C. Lubich. Convolution quadrature and discretized operational calculus. II. Numer. Math., 52(4):413–425, 1988b.
  25. W. J. Mansur. A Time-Stepping Technique to Solve Wave Propagation Problems Using the Boundary Element Method. Phd thesis, University of Southampton, 1983.
  26. M. Messner and M. Schanz. An accelerated symmetric time-domain boundary element formulation for elasticity. Eng. Anal. Bound. Elem., 34(11):944–955, 2010. 10.1016/j.enganabound.2010.06.007.
  27. Tucker dimensionality reduction of three-dimensional arrays in linear time. SIAM J. Matrix Aanal. A., 30(3):939–956, 2008. 10.1137/060655894. URL https://doi.org/10.1137/060655894.
  28. A fast boundary integral equation method for elastodynamics in time domain and its parallelisation. In M. Schanz and O. Steinbach, editors, Boundary Element Analysis: Mathematical Aspects and Applications, volume 29 of Lecture Notes in Applied and Computational Mechanics, pages 161–185. Springer-Verlag, Berlin Heidelberg, 2007.
  29. A. Peirce and E. Siebrits. Stability analysis and design of time-stepping schemes for general elastodynamic boundary element models. Int. J. Numer. Methods. Engrg., 40(2):319–342, 1997. 10.1002/(SICI)1097-0207(19970130)40:2%3C319::AID-NME67%3E3.0.CO;2-I.
  30. S. Sauter and A. Veit. Retarded boundary integral equations on the sphere: Exact and numerical solution. IMA J. of Numer. Anal., 34(2):675–699, 2013.
  31. S.A. Sauter and M. Schanz. Convolution quadrature for the wave equation with impedance boundary conditions. J. Comput. Phys., 334:442–459, 2017. ISSN 0021-9991. http://dx.doi.org/10.1016/j.jcp.2017.01.013. URL //www.sciencedirect.com/science/article/pii/S0021999117300232.
  32. F.-J. Sayas. Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map, volume 50 of Springer Series in Computational Mathematics. Springer, Cham, 2016. 10.1007/978-3-319-26645-9.
  33. M. Schanz. Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach, volume 2 of Lecture Notes in Applied Mechanics. Springer-Verlag, Berlin, Heidelberg, New York, 2001. 10.1007/978-3-540-44575-3.
  34. M. Schanz. On a reformulated convolution quadrature based boundary element method. CMES Comput. Model. Eng. Sci., 58(2):109–128, 2010. 10.3970/cmes.2010.058.109.
  35. M. Schanz and H. Antes. A new visco- and elastodynamic time domain boundary element formulation. Comput. Mech., 20(5):452–459, 1997. 10.1007/s004660050265.
  36. Martin Schanz. Realizations of the generalized adaptive cross approximation in an acoustic time domain boundary element method. Proc. Appl. Math. Mech., 23(2):e202300024, 2023. https://doi.org/10.1002/pamm.202300024. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pamm.202300024.
  37. Comparison of the convolution quadrature method and enhanced inverse FFT with application in elastodynamic boundary element method. Comput. Mech., 57(4):523–536, 2015. ISSN 0178-7675. 10.1007/s00466-015-1237-z. URL http://dx.doi.org/10.1007/s00466-015-1237-z.
  38. Daniel Seibel. Boundary element methods for the wave equation based on hierarchical matrices and adaptive cross approximation. Numer. Math., 150(2):629–670, 2022. 10.1007/s00211-021-01259-8. URL https://doi.org/10.1007/s00211-021-01259-8.
  39. O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, 2008.
  40. A fast BIEM for three-dimensional elastodynamics in time domain. Eng. Anal. Bound. Elem., 28(2):165–180, 2004. Erratum in EABEM, 28, 165–180, 2004.
  41. Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279–311, 1966. 10.1007/BF02289464. URL https://doi.org/10.1007/BF02289464.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.