2000 character limit reached
    
  Toward higher-spin symmetry breaking in the bulk (2312.11096v2)
    Published 18 Dec 2023 in hep-th
  
  Abstract: We present a new vacuum of the bosonic higher-spin gauge theory in $d+1$ dimensions, which has leftover symmetry of the Poincar\'{e} algebra in $d$ dimensions. Its structure is very simple: the space-time geometry is that of $AdS$, while the only nonzero field is a scalar. The scalar extends along the Poincar\'{e} radial coordinate $z$ and is shown to be linearly exact for an arbitrary mixture of its two $\Delta=2$ and $\Delta=d-2$ conformal branches. The obtained vacuum breaks the global higher-spin symmetry leading to a broken phase that lives in the Minkowski space-time.
- X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli, D. Francia, M. Grigoriev, E. Sezgin and E. Skvortsov, “Snowmass White Paper: Higher Spin Gravity and Higher Spin Symmetry,” [arXiv:2205.01567 [hep-th]].
- D. J. Gross, “High-Energy Symmetries of String Theory,” Phys. Rev. Lett. 60, 1229 (1988)
- B. Sundborg, “Stringy gravity, interacting tensionless strings and massless higher spins,” Nucl. Phys. B Proc. Suppl. 102, 113-119 (2001) [arXiv:hep-th/0103247 [hep-th]].
- M. Bianchi, J. F. Morales and H. Samtleben, “On stringy AdS(5) x S**5 and higher spin holography,” JHEP 07, 062 (2003) [arXiv:hep-th/0305052 [hep-th]].
- R. R. Metsaev, “Light cone form of field dynamics in Anti-de Sitter space-time and AdS / CFT correspondence,” Nucl. Phys. B 563, 295-348 (1999) [arXiv:hep-th/9906217 [hep-th]].
- M. A. Vasiliev, “From Coxeter Higher-Spin Theories to Strings and Tensor Models,” JHEP 08, 051 (2018) [arXiv:1804.06520 [hep-th]].
- I. S. Degtev and M. A. Vasiliev, “Field Equations for the Simplest Multi-Particle Higher-Spin Systems,” Phys. Lett. B 797, 134866 (2019) [arXiv:1905.11267 [hep-th]].
- E. S. Fradkin and M. A. Vasiliev, “Candidate to the Role of Higher Spin Symmetry,” Annals Phys. 177, 63 (1987)
- X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, “Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory,” JHEP 11, 149 (2015) [arXiv:1508.04292].
- C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121, no.17, 171604 (2018) [arXiv:1704.07859].
- R. Roiban and A. A. Tseytlin, “On four-point interactions in massless higher spin theory in flat space,” JHEP 04, 139 (2017) [arXiv:1701.05773].
- D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” Universe 4, no.1, 2 (2018) [arXiv:1710.00403 [hep-th]].
- Y. Neiman, “Quartic locality of higher-spin gravity in de Sitter and Euclidean anti-de Sitter space,” Phys. Lett. B 843, 138048 (2023) [arXiv:2302.00852 [hep-th]].
- O. A. Gelfond, “Moderately non-local ηη¯𝜂¯𝜂\eta\bar{\eta}italic_η over¯ start_ARG italic_η end_ARG vertices in the AdS4𝐴𝑑subscript𝑆4AdS_{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT higher-spin gauge theory,” [arXiv:2308.16281 [hep-th]].
- M. A. Vasiliev, “More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions,” Phys. Lett. B 285, 225-234 (1992)
- M. A. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),” Phys. Lett. B 567, 139-151 (2003) [arXiv:hep-th/0304049 [hep-th]].
- R. R. Metsaev, “IIB supergravity and various aspects of light cone formalism in AdS space-time,” [arXiv:hep-th/0002008 [hep-th]].
- M. A. Vasiliev, “Consistent Equations for Interacting Massless Fields of All Spins in the First Order in Curvatures,” Annals Phys. 190 (1989), 59-106
- N. Misuna, “Unfolded Dynamics Approach and Quantum Field Theory,” [arXiv:2208.04306 [hep-th]].
- S. F. Prokushkin and M. A. Vasiliev, “Higher spin gauge interactions for massive matter fields in 3-D AdS space-time,” Nucl. Phys. B 545, 385 (1999) [arXiv:hep-th/9806236 [hep-th]].
- C. Iazeolla and J. Raeymaekers, “On big crunch solutions in Prokushkin-Vasiliev theory,” JHEP 01, 177 (2016) [arXiv:1510.08835 [hep-th]].
- E. Sezgin and P. Sundell, “An Exact solution of 4-D higher-spin gauge theory,” Nucl. Phys. B 762, 1-37 (2007) [arXiv:hep-th/0508158 [hep-th]].
- E. Sezgin and P. Sundell, “On an exact cosmological solution of higher spin gauge theory,” Bulg. J. Phys. 33, no.s1, 506-519 (2006) [arXiv:hep-th/0511296 [hep-th]].
- C. Iazeolla, E. Sezgin and P. Sundell, “Real forms of complex higher spin field equations and new exact solutions,” Nucl. Phys. B 791, 231-264 (2008) [arXiv:0706.2983 [hep-th]].
- V. E. Didenko and M. A. Vasiliev, “Static BPS black hole in 4d higher-spin gauge theory,” Phys. Lett. B 682, 305-315 (2009) [erratum: Phys. Lett. B 722, 389 (2013)] [arXiv:0906.3898 [hep-th]].
- C. Iazeolla and P. Sundell, “Families of exact solutions to Vasiliev’s 4D equations with spherical, cylindrical and biaxial symmetry,” JHEP 12, 084 (2011) [arXiv:1107.1217 [hep-th]].
- C. Iazeolla and P. Sundell, “4D Higher Spin Black Holes with Nonlinear Scalar Fluctuations,” JHEP 10, 130 (2017) [arXiv:1705.06713 [hep-th]].
- R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell and Y. Yin, “FRW and domain walls in higher spin gravity,” JHEP 03, 153 (2018) [arXiv:1712.02401 [hep-th]].
- C. Iazeolla, E. Sezgin and P. Sundell, “On Exact Solutions and Perturbative Schemes in Higher Spin Theory,” Universe 4, no.1, 5 (2018) [arXiv:1711.03550 [hep-th]].
- O. A. Gelfond and M. A. Vasiliev, “Spin-Locality of Higher-Spin Theories and Star-Product Functional Classes,” JHEP 03, 002 (2020) [arXiv:1910.00487 [hep-th]].
- V. E. Didenko and A. V. Korybut, “On z-dominance, shift symmetry and spin locality in higher-spin theory,” JHEP 05, 133 (2023) [arXiv:2212.05006 [hep-th]].
- M. A. Vasiliev, “Differential contracting homotopy in higher-spin theory,” JHEP 11, 048 (2023) [arXiv:2307.09331 [hep-th]].
- V. E. Didenko, “On holomorphic sector of higher-spin theory,” JHEP 10, 191 (2022) [arXiv:2209.01966 [hep-th]].
- V. E. Didenko and A. V. Korybut, “Interaction of symmetric higher-spin gauge fields,” Phys. Rev. D 108, no.8, 086031 (2023) [arXiv:2304.08850 [hep-th]].
- M. A. Vasiliev, “Actions, charges and off-shell fields in the unfolded dynamics approach,” Int. J. Geom. Meth. Mod. Phys. 3, 37-80 (2006) [arXiv:hep-th/0504090 [hep-th]].
- M. Grigoriev, “Off-shell gauge fields from BRST quantization,” [arXiv:hep-th/0605089 [hep-th]].
- X. Bekaert, S. Cnockaert, C. Iazeolla and M. A. Vasiliev, “Nonlinear higher spin theories in various dimensions,” [arXiv:hep-th/0503128 [hep-th]].
- V. E. Didenko and E. D. Skvortsov, “Towards higher-spin holography in ambient space of any dimension,” J. Phys. A 46, 214010 (2013) [arXiv:1207.6786 [hep-th]].
- M. A. Vasiliev, “Holography, Unfolding and Higher-Spin Theory,” J. Phys. A 46, 214013 (2013) [arXiv:1203.5554 [hep-th]].
- V. E. Didenko and M. A. Vasiliev, “Test of the local form of higher-spin equations via AdS / CFT,” Phys. Lett. B 775, 352-360 (2017) [arXiv:1705.03440 [hep-th]].
- V. E. Didenko and A. V. Korybut, “Planar solutions of higher-spin theory. Nonlinear corrections,” JHEP 01, 125 (2022) [arXiv:2110.02256 [hep-th]].
- D. Anselmi, “Higher spin current multiplets in operator product expansions,” Class. Quant. Grav. 17, 1383-1400 (2000) [arXiv:hep-th/9906167 [hep-th]].
- M. Flato and C. Fronsdal, “One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6.,” Lett. Math. Phys. 2, 421-426 (1978)
- M. A. Vasiliev, “Higher spin superalgebras in any dimension and their representations,” JHEP 12, 046 (2004) [arXiv:hep-th/0404124 [hep-th]].
- V. E. Didenko and E. D. Skvortsov, “Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory,” JHEP 04, 158 (2013) [arXiv:1210.7963 [hep-th]].
- I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O(N) vector model,” Phys. Lett. B 550, 213-219 (2002) [arXiv:hep-th/0210114 [hep-th]].
- E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin theories and a test via cubic scalar couplings,” JHEP 07, 044 (2005) [arXiv:hep-th/0305040 [hep-th]].
- R. G. Leigh and A. C. Petkou, “Holography of the N=1 higher spin theory on AdS(4),” JHEP 06, 011 (2003) [arXiv:hep-th/0304217 [hep-th]].
- S. Giombi and X. Yin, “Higher Spin Gauge Theory and Holography: The Three-Point Functions,” JHEP 09, 115 (2010) [arXiv:0912.3462 [hep-th]].
- W. A. Bardeen and M. Moshe, “Spontaneous Breaking of Scale Invariance in a D=3 U(N ) Model with Chern-Simons Gauge Fields,” JHEP 06, 113 (2014) [arXiv:1402.4196 [hep-th]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.