Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Toward higher-spin symmetry breaking in the bulk (2312.11096v2)

Published 18 Dec 2023 in hep-th

Abstract: We present a new vacuum of the bosonic higher-spin gauge theory in $d+1$ dimensions, which has leftover symmetry of the Poincar\'{e} algebra in $d$ dimensions. Its structure is very simple: the space-time geometry is that of $AdS$, while the only nonzero field is a scalar. The scalar extends along the Poincar\'{e} radial coordinate $z$ and is shown to be linearly exact for an arbitrary mixture of its two $\Delta=2$ and $\Delta=d-2$ conformal branches. The obtained vacuum breaks the global higher-spin symmetry leading to a broken phase that lives in the Minkowski space-time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli, D. Francia, M. Grigoriev, E. Sezgin and E. Skvortsov, “Snowmass White Paper: Higher Spin Gravity and Higher Spin Symmetry,” [arXiv:2205.01567 [hep-th]].
  2. D. J. Gross, “High-Energy Symmetries of String Theory,” Phys. Rev. Lett. 60, 1229 (1988)
  3. B. Sundborg, “Stringy gravity, interacting tensionless strings and massless higher spins,” Nucl. Phys. B Proc. Suppl. 102, 113-119 (2001) [arXiv:hep-th/0103247 [hep-th]].
  4. M. Bianchi, J. F. Morales and H. Samtleben, “On stringy AdS(5) x S**5 and higher spin holography,” JHEP 07, 062 (2003) [arXiv:hep-th/0305052 [hep-th]].
  5. R. R. Metsaev, “Light cone form of field dynamics in Anti-de Sitter space-time and AdS / CFT correspondence,” Nucl. Phys. B 563, 295-348 (1999) [arXiv:hep-th/9906217 [hep-th]].
  6. M. A. Vasiliev, “From Coxeter Higher-Spin Theories to Strings and Tensor Models,” JHEP 08, 051 (2018) [arXiv:1804.06520 [hep-th]].
  7. I. S. Degtev and M. A. Vasiliev, “Field Equations for the Simplest Multi-Particle Higher-Spin Systems,” Phys. Lett. B 797, 134866 (2019) [arXiv:1905.11267 [hep-th]].
  8. E. S. Fradkin and M. A. Vasiliev, “Candidate to the Role of Higher Spin Symmetry,” Annals Phys. 177, 63 (1987)
  9. X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, “Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory,” JHEP 11, 149 (2015) [arXiv:1508.04292].
  10. C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121, no.17, 171604 (2018) [arXiv:1704.07859].
  11. R. Roiban and A. A. Tseytlin, “On four-point interactions in massless higher spin theory in flat space,” JHEP 04, 139 (2017) [arXiv:1701.05773].
  12. D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” Universe 4, no.1, 2 (2018) [arXiv:1710.00403 [hep-th]].
  13. Y. Neiman, “Quartic locality of higher-spin gravity in de Sitter and Euclidean anti-de Sitter space,” Phys. Lett. B 843, 138048 (2023) [arXiv:2302.00852 [hep-th]].
  14. O. A. Gelfond, “Moderately non-local η⁢η¯𝜂¯𝜂\eta\bar{\eta}italic_η over¯ start_ARG italic_η end_ARG vertices in the A⁢d⁢S4𝐴𝑑subscript𝑆4AdS_{4}italic_A italic_d italic_S start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT higher-spin gauge theory,” [arXiv:2308.16281 [hep-th]].
  15. M. A. Vasiliev, “More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions,” Phys. Lett. B 285, 225-234 (1992)
  16. M. A. Vasiliev, “Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),” Phys. Lett. B 567, 139-151 (2003) [arXiv:hep-th/0304049 [hep-th]].
  17. R. R. Metsaev, “IIB supergravity and various aspects of light cone formalism in AdS space-time,” [arXiv:hep-th/0002008 [hep-th]].
  18. M. A. Vasiliev, “Consistent Equations for Interacting Massless Fields of All Spins in the First Order in Curvatures,” Annals Phys. 190 (1989), 59-106
  19. N. Misuna, “Unfolded Dynamics Approach and Quantum Field Theory,” [arXiv:2208.04306 [hep-th]].
  20. S. F. Prokushkin and M. A. Vasiliev, “Higher spin gauge interactions for massive matter fields in 3-D AdS space-time,” Nucl. Phys. B 545, 385 (1999) [arXiv:hep-th/9806236 [hep-th]].
  21. C. Iazeolla and J. Raeymaekers, “On big crunch solutions in Prokushkin-Vasiliev theory,” JHEP 01, 177 (2016) [arXiv:1510.08835 [hep-th]].
  22. E. Sezgin and P. Sundell, “An Exact solution of 4-D higher-spin gauge theory,” Nucl. Phys. B 762, 1-37 (2007) [arXiv:hep-th/0508158 [hep-th]].
  23. E. Sezgin and P. Sundell, “On an exact cosmological solution of higher spin gauge theory,” Bulg. J. Phys. 33, no.s1, 506-519 (2006) [arXiv:hep-th/0511296 [hep-th]].
  24. C. Iazeolla, E. Sezgin and P. Sundell, “Real forms of complex higher spin field equations and new exact solutions,” Nucl. Phys. B 791, 231-264 (2008) [arXiv:0706.2983 [hep-th]].
  25. V. E. Didenko and M. A. Vasiliev, “Static BPS black hole in 4d higher-spin gauge theory,” Phys. Lett. B 682, 305-315 (2009) [erratum: Phys. Lett. B 722, 389 (2013)] [arXiv:0906.3898 [hep-th]].
  26. C. Iazeolla and P. Sundell, “Families of exact solutions to Vasiliev’s 4D equations with spherical, cylindrical and biaxial symmetry,” JHEP 12, 084 (2011) [arXiv:1107.1217 [hep-th]].
  27. C. Iazeolla and P. Sundell, “4D Higher Spin Black Holes with Nonlinear Scalar Fluctuations,” JHEP 10, 130 (2017) [arXiv:1705.06713 [hep-th]].
  28. R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell and Y. Yin, “FRW and domain walls in higher spin gravity,” JHEP 03, 153 (2018) [arXiv:1712.02401 [hep-th]].
  29. C. Iazeolla, E. Sezgin and P. Sundell, “On Exact Solutions and Perturbative Schemes in Higher Spin Theory,” Universe 4, no.1, 5 (2018) [arXiv:1711.03550 [hep-th]].
  30. O. A. Gelfond and M. A. Vasiliev, “Spin-Locality of Higher-Spin Theories and Star-Product Functional Classes,” JHEP 03, 002 (2020) [arXiv:1910.00487 [hep-th]].
  31. V. E. Didenko and A. V. Korybut, “On z-dominance, shift symmetry and spin locality in higher-spin theory,” JHEP 05, 133 (2023) [arXiv:2212.05006 [hep-th]].
  32. M. A. Vasiliev, “Differential contracting homotopy in higher-spin theory,” JHEP 11, 048 (2023) [arXiv:2307.09331 [hep-th]].
  33. V. E. Didenko, “On holomorphic sector of higher-spin theory,” JHEP 10, 191 (2022) [arXiv:2209.01966 [hep-th]].
  34. V. E. Didenko and A. V. Korybut, “Interaction of symmetric higher-spin gauge fields,” Phys. Rev. D 108, no.8, 086031 (2023) [arXiv:2304.08850 [hep-th]].
  35. M. A. Vasiliev, “Actions, charges and off-shell fields in the unfolded dynamics approach,” Int. J. Geom. Meth. Mod. Phys. 3, 37-80 (2006) [arXiv:hep-th/0504090 [hep-th]].
  36. M. Grigoriev, “Off-shell gauge fields from BRST quantization,” [arXiv:hep-th/0605089 [hep-th]].
  37. X. Bekaert, S. Cnockaert, C. Iazeolla and M. A. Vasiliev, “Nonlinear higher spin theories in various dimensions,” [arXiv:hep-th/0503128 [hep-th]].
  38. V. E. Didenko and E. D. Skvortsov, “Towards higher-spin holography in ambient space of any dimension,” J. Phys. A 46, 214010 (2013) [arXiv:1207.6786 [hep-th]].
  39. M. A. Vasiliev, “Holography, Unfolding and Higher-Spin Theory,” J. Phys. A 46, 214013 (2013) [arXiv:1203.5554 [hep-th]].
  40. V. E. Didenko and M. A. Vasiliev, “Test of the local form of higher-spin equations via AdS / CFT,” Phys. Lett. B 775, 352-360 (2017) [arXiv:1705.03440 [hep-th]].
  41. V. E. Didenko and A. V. Korybut, “Planar solutions of higher-spin theory. Nonlinear corrections,” JHEP 01, 125 (2022) [arXiv:2110.02256 [hep-th]].
  42. D. Anselmi, “Higher spin current multiplets in operator product expansions,” Class. Quant. Grav. 17, 1383-1400 (2000) [arXiv:hep-th/9906167 [hep-th]].
  43. M. Flato and C. Fronsdal, “One Massless Particle Equals Two Dirac Singletons: Elementary Particles in a Curved Space. 6.,” Lett. Math. Phys. 2, 421-426 (1978)
  44. M. A. Vasiliev, “Higher spin superalgebras in any dimension and their representations,” JHEP 12, 046 (2004) [arXiv:hep-th/0404124 [hep-th]].
  45. V. E. Didenko and E. D. Skvortsov, “Exact higher-spin symmetry in CFT: all correlators in unbroken Vasiliev theory,” JHEP 04, 158 (2013) [arXiv:1210.7963 [hep-th]].
  46. I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O(N) vector model,” Phys. Lett. B 550, 213-219 (2002) [arXiv:hep-th/0210114 [hep-th]].
  47. E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin theories and a test via cubic scalar couplings,” JHEP 07, 044 (2005) [arXiv:hep-th/0305040 [hep-th]].
  48. R. G. Leigh and A. C. Petkou, “Holography of the N=1 higher spin theory on AdS(4),” JHEP 06, 011 (2003) [arXiv:hep-th/0304217 [hep-th]].
  49. S. Giombi and X. Yin, “Higher Spin Gauge Theory and Holography: The Three-Point Functions,” JHEP 09, 115 (2010) [arXiv:0912.3462 [hep-th]].
  50. W. A. Bardeen and M. Moshe, “Spontaneous Breaking of Scale Invariance in a D=3 U(N ) Model with Chern-Simons Gauge Fields,” JHEP 06, 113 (2014) [arXiv:1402.4196 [hep-th]].
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: