Papers
Topics
Authors
Recent
2000 character limit reached

Dissipative Stability and Dynamical Phase Transition in Two Driven Interacting Qubits (2312.10609v1)

Published 17 Dec 2023 in quant-ph and cond-mat.supr-con

Abstract: We examine a two-qubit system influenced by a time-periodic external field while interacting with a Markovian bath. This scenario significantly impacts the temporal coherence characteristics of the system. By solving the evolution equation for the density matrix operator, we determine the characteristic equilibration time and analyze the concurrence parameter - a key metric for quantifying entanglement. Our findings reveal the system's ability to navigate through a dynamic phase transition. These results pave the way to designing systems of interacting qubits demonstrating robust entanglement under realistic conditions of interaction with the environment.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. L. Viola and S. Lloyd, Physical Review A 58, 2733 (1998).
  2. W. H. Zurek, Reviews of modern physics 75, 715 (2003).
  3. M. Grifoni and P. Hänggi, Physics Reports 304, 229 (1998).
  4. R. Moessner and S. L. Sondhi, Nature Physics 13, 424 (2017).
  5. L. D’Alessio and A. Polkovnikov, Annals of Physics 333, 19 (2013).
  6. K. G. A. Miroszewski and K. Sacha, Physical Review Letters 120, 140401 (2018).
  7. The code is available at https://github.com/Kirill-Shulga/Time-Molecule.
  8. S. Hill and W. K. Wootters, Physical review letters 78, 5022 (1997).
  9. J. von Neumann, Zeitschrift für Physik 57, 190 (1929).
  10. R. d. L. Kronig, Josa 12, 547 (1926).
  11. H. A. Kramers, in Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress) Como, Vol. 2 (1927) pp. 545–557.
  12. R. Kubo, Journal of the Physical Society of Japan 12, 570 (1957).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.