Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Student as an Inherent Denoiser of Noisy Teacher (2312.10185v1)

Published 15 Dec 2023 in cs.LG and cs.CL

Abstract: Knowledge distillation (KD) has been widely employed to transfer knowledge from a LLM to a specialized model in low-data regimes through pseudo label learning. However, pseudo labels generated by teacher models are usually noisy and may influence KD performance. This study delves into KD with noisy teachers and uncovers that the student model can already generate more accurate predictions than the teacher labels used to train it during KD, indicating its inherent ability to denoise noisy teacher labels. Motivated by this finding, we propose Peer-Advised KD to improve vanilla KD from noisy teachers. Experiments show that Peer-Advised KD can outperform LLM by approximately 5% with 50 human-labeled data, and even competitive to standard supervised finetuning with 750 human-labeled data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.