Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Probing Clifford Algebras Through Spin Groups: A Standard Model Perspective (2312.10071v1)

Published 6 Dec 2023 in hep-th

Abstract: Division algebras have demonstrated their utility in studying non-associative algebras and their connection to the Standard Model through complex Clifford algebras. This article focuses on exploring the connection between these complex Clifford algebras and their corresponding real Clifford algebras providing insight into geometric properties of bivector gauge symmetries. We first generate gauge symmetries in the complex Clifford algebra through a general Witt decomposition. Gauge symmetries act as a constraint on the underlying real Clifford algebra, where they're then translated from their complex form to their bivector counterpart. Spin group arguments allow the identification of bivector structures which preserve the gauge symmetry yielding the corresponding real Clifford algebra. We conclude that Standard Model gauge groups emerge from higher-dimensional Clifford algebras carrying Euclidean signatures, where particle states are recognized as a combination of basis elements corresponding to complex Euclidean Clifford algebras.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. H. Georgi and S. L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974).
  2. G. M. and F. Gursey, Quark structure and the octonions, J. Math. Phys 14 (1973).
  3. G. M. and F. Gursey, Quark statistics and octonions, Phys. Rev. D 19 (1974).
  4. G. Dixon, Division algebras: family replication, J. Math. Phys 45 (2004).
  5. C. Furey, Charge quantization from a number operator, Phys. Lett. B 742 (2015).
  6. M. Dubois-Violette, Exceptional quantum geometry and particle physics, Nucl. Phys. B 912 (2016).
  7. M. Dubois-Violette and I. Todorov, Exceptional quantum geometry and particle physics II, Nucl. Phys. B 938 (2019).
  8. M. Dubois-Violette and I. Todorov, Deducing the symmetry of the standard model from the automorphism and structure groups of the exceptional Jordan algebra, Int. J. Mod. Phys. A 33 (2018).
  9. A. B. Gillard and N. G. Gresnigt, Three fermion generations with two unbroken gauge symmetries from the complex sedenions, Eur. Phys. J.C 79 (2019).
  10. N. Gresnigt, L. Gourlay, and A. Varma, Three generations of colored fermions with s3subscript𝑠3s_{3}italic_s start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT family symmetry from caley-dickson sedenions, Eur. Phys. J.C 83 (2023).
  11. G. M, Octonionic Hilbert spaces, the Poincare group and SU(3), J. Math. Phys. 17 (1976).
  12. C. B. S. C. Y. G. A. Khalfan and L. Kurt, Revisiting the role of octonions in hadronic physics, Phys. Part. Nuclei LetterT 14 (2017).
  13. N. G. Gresnigt, A topological model of composite preons from the minimal ideals of two clifford algebras, Phys. Lett. B 808 (2020).
  14. C. Furey, su(3)C×su(2)L×u(1)Y(×u(1)X)su(3)_{C}\times su(2)_{L}\times u(1)_{Y}(\times u(1)_{X})italic_s italic_u ( 3 ) start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT × italic_s italic_u ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT × italic_u ( 1 ) start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT ( × italic_u ( 1 ) start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ) as a symmetry of division algebraic ladder operators, Eur. Phys. J.C 78 (2018b).
  15. C. Furey, Standard Model physics from abstract mathematical objects ?, Ph.D. thesis, Univerisity of Waterloo (2016).
  16. H. D. S. F. Brackx and V. Soucek, On the structure of complex clifford algebras, Adv. Appl. Clifford algebras 21 (2011).
  17. F. S. C. Doran, D. Hestenes and N. V. Acker, Lie groups as spin groups, J. Math. Phys 34 (1993).
  18. D. Garling, Clifford Algebras: An Introduction (Cambridge University Press, 2011).
  19. P. Lounesto, Clifford Algebras and Spinors (Cambridge University Press, 1997).
  20. A. L. C. Doran, Geometric Algebra for Physicists (Cambridge University Press, 2003).
  21. D. Hestenes and R. Gurtler., Consistency in the formulation of the dirac, pauli and schrödinger theories, J. Math. Phys. 16 (1975).
  22. G. Trayling, Geometric approach to the standard model, arXiv:hep-th/9912231  (1993).
  23. C. D. A. Lasenby and S. Gull, States and operators in the spacetime algebra, Found. Phys. 23 (1993).
  24. D. Hestenes, Space–Time Algebra (Gordon and Breach, 1966).
  25. P. Lounesto, Clifford Algebras and Spinors (Cambridge University Press, 2001).
  26. W. Lu, Yang-mills interactions and gravity in terms of clifford algebra, Adv. Appl. Clifford algebras 21 (2011).
  27. G. E. McClellan, Operators and field equations in the electroweak sector of particle physics, Adv. Appl. Clifford algebras 31 (2021).
  28. G. E. McClellan, Using raising and lowering operators from geometric algebra for electroweak theory in particle physics, Adv. Appl. Clifford algebras 29 (2019).
  29. G. McClellan, Application of geometric algebra to the electroweak sector of the standard model of particle physics, Adv. Appl. Clifford algebras 28 (2017).
  30. M. Pavsic, Kaluza-klein theory without extra dimensions:curved clifford space, Phys. Lett. B 614 (2004).
  31. M. Pavsic, Spin gauge theory of gravity in clifford space:a realization of kaluza-klein theory in 4-dimensional spacetime, Int. J. Mod. Physics. A 21 (2005).
  32. M. Pavsic, Space inversion of spinors revisited: A possible explanation of chiral behavior in weak interactions, Phys. Lett. B 692 (2010a).
  33. M. Pavsic, On the unification of interactions by clifford algebra, Adv. Appl. Clifford algebras 20 (2010b).
  34. A. Lasenby, C. Doran, and S. Gull, A multivector derivative approach to lagrangian field theory, Found. Phys 23 (1993).
  35. J. S. R. Chisholm and R. S. Farwell, Spin gauge theories: A summary, in Clifford Algebras and Their Application in Mathematical Physics: Aachen 1996 (Springer Netherlands, 1998) pp. 53–56.
  36. R. F. J.S.R. Chisholm, Gauge transformations of spinor within a clifford algebraic structure, J. Physics. A 32 (1999).
  37. S. Weinberg, Steven Weinberg (Cambridge University Press, 1995).
  38. M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, USA, 1995).
  39. R. Ablamowicz, Construction of spinors via witt decomposition and primitive idempotents: a review, Clifford Algebras and Spinor Structures. Mathematics and its Applications Springer 31 (1995).
  40. D. Bailin and A.Love, Kaluza-klein theories, Rept. Prog. Phys 50 (1987).
  41. C. Doran, Geometric algebra and tis application to Mathematical Physics, Ph.D. thesis, University of Cambridge (1994).
  42. M. Srednicki, Quantum Field Theory (Cambridge University Press, 2007).
  43. M. Walker, s⁢u⁢(2)×s⁢u⁢(2)𝑠𝑢2𝑠𝑢2su(2)\times su(2)italic_s italic_u ( 2 ) × italic_s italic_u ( 2 ) algebras and the lorentz group o⁢(3,3)𝑜33o(3,3)italic_o ( 3 , 3 ), Symmetry 12 (2020).
  44. J. V. J. Roldao da Rocha, Revisiting clifford algebras and spinors iii: Conformal structures and twistors in the paravector model of spacetime, Int.J.Mod.Physics 4 (2008).
  45. J. V. J. Roldao da Rocha, Conformal structures and twistors in the paravector model of spacetime, Int.J.Mod.Physics 4 (2007).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.