Papers
Topics
Authors
Recent
2000 character limit reached

Extrapolation of polaron properties to low phonon frequencies by Bayesian machine learning (2312.09991v1)

Published 15 Dec 2023 in quant-ph and cond-mat.supr-con

Abstract: Feasibility of accurate quantum calculations is often restricted by the dimensionality of the truncated Hilbert space required for the numerical computations. The present work demonstrates Bayesian ML models that use quantum properties in an effectively lower-dimensional Hilbert space to make predictions for the Hamiltonian parameters that require a larger basis set as applied to a classical problem in quantum statistical mechanics, the polaron problem. We consider two polaron models: the Su-Schrieffer-Heeger (SSH) model and the mixed SSH-Holstein model. We demonstrate ML models that can extrapolate polaron properties in the phonon frequency. We consider the sharp transition in the ground-state momentum of the SSH polaron and examine the evolution of this transition from the anti-adiabatic regime to the adiabatic regime. We also demonstrate Bayesian models that use the posterior distributions of highly approximate quantum calculations as the prior distribution for models of more accurate quantum results. This drastically reduces the number of fully converged quantum calculations required to map out the polaron dispersion relations for the full range of Hamiltonian parameters of interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. T. Holstein, Studies of polaron motion: Part I. the molecular-crystal model, Ann. Physics 8, 325 (1959a).
  2. T. Holstein, Studies of polaron motion: Part II. the “small” polaron, Ann. Physics 8, 343 (1959b).
  3. S. Barišić, J. Labbé, and J. Friedel, Tight binding and transition-metal superconductivity, Phys. Rev. Lett. 25, 919 (1970a).
  4. S. Barišić, J. Labbé, and J. Friedel, Tight binding and transition-metal superconductivity, Phys. Rev. Lett. 25, 919 (1970b).
  5. D. J. J. Marchand, P. C. E. Stamp, and M. Berciu, Dual coupling effective band model for polarons, Phys. Rev. B 95, 035117 (2017).
  6. A. S. Alexandrov and A. B. Krebs, Polarons in high-temperature superconductors, Sov. phys., Usp. 35, 345 (1992).
  7. N. Mott, Polaron models of high-temperature superconductivity, Physica C Supercond. 205, 191 (1993).
  8. C. Zhang, N. V. Prokof’ev, and B. V. Svistunov, Peierls/ Su-Schrieffer-Heeger polarons in two dimensions, Phys. Rev. B 104, 035143 (2021).
  9. A. S. Mishchenko, N. Nagaosa, and N. Prokof’ev, Diagrammatic Monte Carlo method for many-polaron problems, Phys. Rev. Lett. 113, 166402 (2014).
  10. M. R. Carbone, D. R. Reichman, and J. Sous, Numerically exact generalized Green’s function cluster expansions for electron-phonon problems, Phys. Rev. B 104, 035106 (2021b).
  11. K.-S. Kim, Z. Han, and J. Sous, Semi-classical theory of bipolaronic superconductivity in a bond-modulated electron-phonon model, arXiv preprint arXiv:2308.01961  (2023).
  12. J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nat. Phys. 13, 431 (2017).
  13. E. P. Van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Learning phase transitions by confusion, Nat. Phys. 13, 435 (2017).
  14. S. J. Wetzel and M. Scherzer, Machine learning of explicit order parameters: From the Ising model to SU(2) lattice gauge theory, Phys. Rev. B 96, 184410 (2017).
  15. K. Inui, Y. Kato, and Y. Motome, Determinant-free fermionic wave function using feed-forward neural networks, Phys. Rev. Res. 3, 043126 (2021).
  16. J. Dai and R. V. Krems, Neural network gaussian processes as efficient models of potential energy surfaces for polyatomic molecules, Mach. Learn.: Sci. Technol. 4, 045027 (2023).
  17. J. Dai and R. V. Krems, Quantum Gaussian process model of potential energy surface for a polyatomic molecule, J. Chem. Phys. 156, 184802 (2022).
  18. K. Asnaashari and R. V. Krems, Gradient domain machine learning with composite kernels: improving the accuracy of pes and force fields for large molecules, Mach. Learn.: Sci. Technol. 3, 015005 (2021).
  19. J. Cui, Z. Li, and R. V. Krems, Gaussian process model for extrapolation of scattering observables for complex molecules: From benzene to benzonitrile, J. Chem. Phys. 143, 154101 (2015).
  20. J. Cui and R. V. Krems, Gaussian process model for collision dynamics of complex molecules, Phys. Rev. Lett. 115, 073202 (2015).
  21. R. A. Vargas-Hernández and R. V. Krems, Physical extrapolation of quantum observables by generalization with gaussian processes, in Machine Learning Meets Quantum Physics (Springer International Publishing, Cham, 2020) pp. 171–194.
  22. M. Berciu, Green’s function of a dressed particle, Phys. Rev. Lett. 97, 036402 (2006).
  23. G. L. Goodvin, M. Berciu, and G. A. Sawatzky, Green’s function of the Holstein polaron, Phys. Rev. B 74, 245104 (2006).
  24. M. Berciu and G. L. Goodvin, Systematic improvement of the momentum average approximation for the green’s function of a Holstein polaron, Phys. Rev. B 76, 165109 (2007).
  25. G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6, 461 (1978).
  26. A. E. Wiens, A. V. Copan, and H. F. Schaefer, Multi-fidelity gaussian process modeling for chemical energy surfaces, Chem. Phys. Lett. 737, 100022 (2019).
  27. W.-L. Loh, On latin hypercube sampling, Ann. Stat. 24, 2058 (1996).
  28. J. H. Fetherolf, D. Golež, and T. C. Berkelbach, A unification of the Holstein polaron and dynamic disorder pictures of charge transport in organic crystals, Phys. Rev. X 10, 021062 (2020).
  29. T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange, J. Chem. Phys. 138, 114103 (2013).
  30. J. Sous, M. Berciu, and R. V. Krems, Bipolarons bound by repulsive phonon-mediated interactions, Phys. Rev. A 96, 063619 (2017a).
  31. A. Macridin, G. A. Sawatzky, and M. Jarrell, Two-dimensional Hubbard-Holstein bipolaron, Phys. Rev. B 69, 245111 (2004).
  32. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
  33. E. Jeckelmann and S. R. White, Density-matrix renormalization-group study of the polaron problem in the Holstein model, Phys. Rev. B 57, 6376 (1998).
  34. B. K. Chakraverty, J. Ranninger, and D. Feinberg, Experimental and theoretical constraints of bipolaronic superconductivity in high Tcsubscript𝑇𝑐{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT materials: An impossibility, Phys. Rev. Lett. 81, 433 (1998).
  35. A. S. Alexandrov, Breakdown of the Migdal-Eliashberg theory in the strong-coupling adiabatic regime, EPL 56, 92 (2001).
  36. A. Alexandrov and J. Ranninger, Bipolaronic superconductivity, Phys. Rev. B 24, 1164 (1981).
  37. G. Wellein, H. Röder, and H. Fehske, Polarons and bipolarons in strongly interacting electron-phonon systems, Phys. Rev. B 53, 9666 (1996).
  38. M. R. Carbone, When not to use machine learning: A perspective on potential and limitations, MRS Bulletin 47, 968 (2022).
  39. D. Marchand, Polaron physics beyond the Holstein model, Ph.D. thesis, University of British Columbia (2011).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.