Extra Dimensions Beyond the Horizon (2312.09853v2)
Abstract: We discuss an extra-dimensional braneworld with a 5th dimension compactified on a circle. As a characteristic feature, the warp factor is hyperbolic and separates the hidden and visible branes by a bulk horizon without a singularity. The two most widely separated scales of 4D physics - the 4D Planck mass and 4D cosmological constant - are determined by two physical scales in the extra dimension, namely: $(i)$ the proper size of the extra dimension, $R$, and, $(ii)$ the distance between the visible brane and the horizon, $R_0$. A realistic scale hierarchy between 4D Planck mass and 4D cosmological constant is obtained for $R/R_0\sim2.34$. The usual fine tuning is not reduced but promoted to a fine tuning of two separate brane energy densities that must approach the fundamental scale of the model with very high precision. Our scenario is based on an exact solution to the 5D Einstein equations with a strictly empty bulk and Friedmann-Lema^itre-Robertson-Walker metric on the 4D branes. This requires positive 4D brane energy densities and describes an adiabatic runaway solution in agreement with the de Sitter swampland conjecture. The Kaluza-Klein (KK) graviton states are solutions of a modified P\"oschl-Teller potential which permits a discrete graviton spectrum of exactly two modes. In addition to the usual massless graviton, our scenario predicts an extra massive spin-2 graviton with a mass gap of $m_1=\sqrt{2}H_0\approx2\times10{-33}\,\mathrm{eV}$ which might be detectable in the foreseeable future. A KK tower of gravitons, or a possible continuum of massive graviton states, is prohibited by unitarity with respect to the horizon. We discuss hurdles in turning this model into a realistic cosmology at all times, which points us towards 4D brane tensions that that must be raising towards the fundamental scale of the model, while the observable 4D expansion rate is decreasing.
- V. A. Rubakov and M. E. Shaposhnikov, “Do We Live Inside a Domain Wall?,” Phys. Lett. B 125 (1983) 136–138.
- I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “New dimensions at a millimeter to a Fermi and superstrings at a TeV,” Phys. Lett. B 436 (1998) 257–263, arXiv:hep-ph/9804398.
- N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The Hierarchy problem and new dimensions at a millimeter,” Phys. Lett. B 429 (1998) 263–272, arXiv:hep-ph/9803315.
- I. Antoniadis, S. Dimopoulos, and A. Giveon, “Little string theory at a TeV,” JHEP 05 (2001) 055, arXiv:hep-th/0103033 [hep-th].
- I. Antoniadis, A. Arvanitaki, S. Dimopoulos, and A. Giveon, “Phenomenology of TeV Little String Theory from Holography,” Phys. Rev. Lett. 108 (2012) 081602, arXiv:1102.4043 [hep-ph].
- P. Cox and T. Gherghetta, “Radion Dynamics and Phenomenology in the Linear Dilaton Model,” JHEP 05 (2012) 149, arXiv:1203.5870 [hep-ph].
- M. Baryakhtar, “Graviton Phenomenology of Linear Dilaton Geometries,” Phys. Rev. D85 (2012) 125019, arXiv:1202.6674 [hep-ph].
- L. Randall and R. Sundrum, “A Large mass hierarchy from a small extra dimension,” Phys. Rev. Lett. 83 (1999) 3370–3373, arXiv:hep-ph/9905221.
- L. Randall and R. Sundrum, “An Alternative to compactification,” Phys. Rev. Lett. 83 (1999) 4690–4693, arXiv:hep-th/9906064.
- P. Horava and E. Witten, “Heterotic and type I string dynamics from eleven-dimensions,” Nucl. Phys. B 460 (1996) 506–524, arXiv:hep-th/9510209.
- A. Lukas, B. A. Ovrut, K. S. Stelle, and D. Waldram, “The Universe as a domain wall,” Phys. Rev. D 59 (1999) 086001, arXiv:hep-th/9803235.
- T. Nihei, “Inflation in the five-dimensional universe with an orbifold extra dimension,” Phys. Lett. B465 (1999) 81–85, arXiv:hep-ph/9905487 [hep-ph].
- N. Kaloper, “Bent domain walls as brane worlds,” Phys. Rev. D60 (1999) 123506, arXiv:hep-th/9905210 [hep-th].
- H. B. Kim and H. D. Kim, “Inflation and gauge hierarchy in Randall-Sundrum compactification,” Phys. Rev. D61 (2000) 064003, arXiv:hep-th/9909053 [hep-th].
- D. Langlois, R. Maartens, and D. Wands, “Gravitational waves from inflation on the brane,” Phys. Lett. B 489 (2000) 259–267, arXiv:hep-th/0006007.
- N. Arkani-Hamed, S. Dimopoulos, and J. March-Russell, “Stabilization of submillimeter dimensions: The New guise of the hierarchy problem,” Phys. Rev. D 63 (2001) 064020, arXiv:hep-th/9809124.
- C. Gomez, B. Janssen, and P. J. Silva, “Brane world with bulk horizons,” JHEP 04 (2000) 027, arXiv:hep-th/0003002.
- E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2 (1998) 505–532, arXiv:hep-th/9803131.
- G. T. Horowitz and R. C. Myers, “The AdS / CFT correspondence and a new positive energy conjecture for general relativity,” Phys. Rev. D 59 (1998) 026005, arXiv:hep-th/9808079.
- D. Birmingham, “Topological black holes in Anti-de Sitter space,” Class. Quant. Grav. 16 (1999) 1197–1205, arXiv:hep-th/9808032.
- A. Chamblin, S. W. Hawking, and H. S. Reall, “Brane world black holes,” Phys. Rev. D 61 (2000) 065007, arXiv:hep-th/9909205.
- P. Kraus, “Dynamics of anti-de Sitter domain walls,” JHEP 12 (1999) 011, arXiv:hep-th/9910149.
- S. S. Gubser, “AdS / CFT and gravity,” Phys. Rev. D 63 (2001) 084017, arXiv:hep-th/9912001.
- P. Binetruy, C. Deffayet, and D. Langlois, “Nonconventional cosmology from a brane universe,” Nucl. Phys. B565 (2000) 269–287, arXiv:hep-th/9905012 [hep-th].
- P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois, “Brane cosmological evolution in a bulk with cosmological constant,” Phys. Lett. B477 (2000) 285–291, arXiv:hep-th/9910219 [hep-th].
- C. Csaki, M. Graesser, C. F. Kolda, and J. Terning, “Cosmology of one extra dimension with localized gravity,” Phys. Lett. B462 (1999) 34–40, arXiv:hep-ph/9906513 [hep-ph].
- J. M. Cline, C. Grojean, and G. Servant, “Cosmological expansion in the presence of extra dimensions,” Phys. Rev. Lett. 83 (1999) 4245, arXiv:hep-ph/9906523.
- D. J. H. Chung and K. Freese, “Cosmological challenges in theories with extra dimensions and remarks on the horizon problem,” Phys. Rev. D 61 (2000) 023511, arXiv:hep-ph/9906542.
- C. Csaki, M. Graesser, L. Randall, and J. Terning, “Cosmology of brane models with radion stabilization,” Phys. Rev. D62 (2000) 045015, arXiv:hep-ph/9911406 [hep-ph].
- P. Kanti, I. I. Kogan, K. A. Olive, and M. Pospelov, “Cosmological three-brane solutions,” Phys. Lett. B468 (1999) 31–39, arXiv:hep-ph/9909481 [hep-ph].
- C. Csaki, M. L. Graesser, and G. D. Kribs, “Radion dynamics and electroweak physics,” Phys. Rev. D 63 (2001) 065002, arXiv:hep-th/0008151.
- K. Choi, S. H. Im, and C. S. Shin, “General Continuum Clockwork,” JHEP 07 (2018) 113, arXiv:1711.06228 [hep-ph].
- J.-F. Dufaux, J. E. Lidsey, R. Maartens, and M. Sami, “Cosmological perturbations from brane inflation with a Gauss-Bonnet term,” Phys. Rev. D 70 (2004) 083525, arXiv:hep-th/0404161.
- S. Deser and A. Waldron, “Stability of massive cosmological gravitons,” Phys. Lett. B 508 (2001) 347–353, arXiv:hep-th/0103255.
- A. V. Frolov and L. Kofman, “Gravitational waves from brane world inflation,” arXiv:hep-th/0209133.
- C. de Rham, J. T. Deskins, A. J. Tolley, and S.-Y. Zhou, “Graviton Mass Bounds,” Rev. Mod. Phys. 89 no. 2, (2017) 025004, arXiv:1606.08462 [astro-ph.CO].
- Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
- S. H. Im, H. P. Nilles, and A. Trautner, “Exploring extra dimensions through inflationary tensor modes,” JHEP 03 (2018) 004, arXiv:1707.03830 [hep-ph].
- W. Israel, “Singular hypersurfaces and thin shells in general relativity,” Il Nuovo Cimento B (1965-1970) 44 no. 1, (1966) 1–14.
- C. Csaki, J. Erlich, T. J. Hollowood, and Y. Shirman, “Universal aspects of gravity localized on thick branes,” Nucl. Phys. B 581 (2000) 309–338, arXiv:hep-th/0001033.
- P. Kanti, K. A. Olive, and M. Pospelov, “Static solutions for brane models with a bulk scalar field,” Phys. Lett. B481 (2000) 386–396, arXiv:hep-ph/0002229 [hep-ph].
- W. D. Goldberger and M. B. Wise, “Modulus stabilization with bulk fields,” Phys. Rev. Lett. 83 (1999) 4922–4925, arXiv:hep-ph/9907447.
- S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, “De Sitter vacua in string theory,” Phys. Rev. D 68 (2003) 046005, arXiv:hep-th/0301240.
- G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, “De Sitter Space and the Swampland,” arXiv:1806.08362 [hep-th].
- F. Denef, A. Hebecker, and T. Wrase, “de Sitter swampland conjecture and the Higgs potential,” Phys. Rev. D98 no. 8, (2018) 086004, arXiv:1807.06581 [hep-th].
- J. Lesgourgues, S. Pastor, M. Peloso, and L. Sorbo, “Cosmology of the Randall-Sundrum model after dilaton stabilization,” Phys. Lett. B489 (2000) 411, arXiv:hep-ph/0004086 [hep-ph].
- A. Hebecker and J. March-Russell, “Randall-Sundrum II cosmology, AdS / CFT, and the bulk black hole,” Nucl. Phys. B 608 (2001) 375–393, arXiv:hep-ph/0103214.
- D. Langlois, L. Sorbo, and M. Rodriguez-Martinez, “Cosmology of a brane radiating gravitons into the extra dimension,” Phys. Rev. Lett. 89 (2002) 171301, arXiv:hep-th/0206146.
- D. Langlois and L. Sorbo, “Bulk gravitons from a cosmological brane,” Phys. Rev. D 68 (2003) 084006, arXiv:hep-th/0306281.
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.
- D. Bailin and A. Love, “Kaluza-Klein Theories in Twelve-dimensions,” Nucl. Phys. B 254 (1985) 543.
- G. Pöschl and E. Teller, “Bemerkungen zur Quantenmechanik des anharmonischen Oszillators,” Z. Phys. 83 (1933) 143–151.
- J. I. Díaz, J. Negro, L. M. Nieto, and O. Rosas-Ortiz, “The supersymmetric modified Pöschl-Teller and delta well potentials,” Journal of Physics A: Mathematical and General 32 no. 48, (1999) 8447.
- A. Brandhuber and K. Sfetsos, “Nonstandard compactifications with mass gaps and Newton’s law,” JHEP 10 (1999) 013, arXiv:hep-th/9908116.
- A. Herrera-Aguilar, D. Malagon-Morejon, R. R. Mora-Luna, and U. Nucamendi, “Aspects of thick brane worlds: 4D gravity localization, smoothness, and mass gap,” Mod. Phys. Lett. A 25 (2010) 2089–2097, arXiv:0910.0363 [hep-th].
- N. Barbosa-Cendejas, A. Herrera-Aguilar, U. Nucamendi, I. Quiros, and K. Kanakoglou, “Mass hierarchy, mass gap and corrections to Newton’s law on thick branes with Poincare symmetry,” Gen. Rel. Grav. 46 (2014) 1631, arXiv:0712.3098 [hep-th].
- H. Bateman, Higher Transcendental Functions Vol.1. McGraw-Hill, New York, 1953.
- M. Gell-Mann and B. Zwiebach, “Dimensional Reduction of Space-time Induced by Nonlinear Scalar Dynamics and Noncompact Extra Dimensions,” Nucl. Phys. B 260 (1985) 569–592.
- N. Arkani-Hamed, S. Dimopoulos, G. R. Dvali, and N. Kaloper, “Infinitely large new dimensions,” Phys. Rev. Lett. 84 (2000) 586–589, arXiv:hep-th/9907209.
- S. Carroll, Spacetime and Geometry. Pearson Education Limited, Essex, 2014.
- D.-C. Dai and D. Stojkovic, “Green’s function of a massless scalar field in curved space-time and superluminal phase velocity of the retarded potential,” Phys. Rev. D 86 (2012) 084034, arXiv:1209.3779 [hep-th].
- LIGO Scientific, VIRGO, KAGRA Collaboration, R. Abbott et al., “Tests of General Relativity with GWTC-3,” arXiv:2112.06861 [gr-qc].
- C. M. Will, “Solar system versus gravitational-wave bounds on the graviton mass,” Class. Quant. Grav. 35 no. 17, (2018) 17LT01, arXiv:1805.10523 [gr-qc].
- S. Gupta and S. Desai, “Limit on graviton mass using stacked galaxy cluster catalogs from SPT-SZ, Planck-SZ and SDSS-redMaPPer,” Annals Phys. 399 (2018) 85–92, arXiv:1810.00198 [astro-ph.CO].
- A. Piórkowska-Kurpas, S. Cao, and M. Biesiada, “Graviton mass from X-COP galaxy clusters,” JHEAp 33 (2022) 37–43.
- S. R. Choudhury, G. C. Joshi, S. Mahajan, and B. H. J. McKellar, “Probing large distance higher dimensional gravity from lensing data,” Astropart. Phys. 21 (2004) 559–563, arXiv:hep-ph/0204161.
- K. Jusufi, G. Leon, and A. D. Millano, “Dark Universe phenomenology from Yukawa potential?,” Phys. Dark Univ. 42 (2023) 101318, arXiv:2304.11492 [gr-qc].
- E. González, K. Jusufi, G. Leon, and E. N. Saridakis, “Observational constraints on Yukawa cosmology and connection with black hole shadows,” Phys. Dark Univ. 42 (2023) 101304, arXiv:2305.14305 [astro-ph.CO].
- A. Higuchi, “Forbidden Mass Range for Spin-2 Field Theory in De Sitter Space-time,” Nucl. Phys. B 282 (1987) 397–436.
- G. F. Giudice, E. W. Kolb, J. Lesgourgues, and A. Riotto, “Transdimensional Physics and Inflation,” Phys. Rev. D 66 (2002) 083512, arXiv:hep-ph/0207145.
- R. Maartens and K. Koyama, “Brane-World Gravity,” Living Rev. Rel. 13 (2010) 5, arXiv:1004.3962 [hep-th].
- P. W. Graham, D. E. Kaplan, and S. Rajendran, “Cosmological Relaxation of the Electroweak Scale,” Phys. Rev. Lett. 115 no. 22, (2015) 221801, arXiv:1504.07551 [hep-ph].
- L. F. Abbott, “A Mechanism for Reducing the Value of the Cosmological Constant,” Phys. Lett. B 150 (1985) 427–430.
- J. M. Martín-García, “xPerm: fast index canonicalization for tensor computer algebra,” Computer Physics Communications 179 no. 8, (2008) 597–603, arXiv:0803.0862 [cs.SC].
- D. Brizuela, J. M. Martin-Garcia, and G. A. Mena Marugan, “xPert: Computer algebra for metric perturbation theory,” Gen. Rel. Grav. 41 (2009) 2415–2431, arXiv:0807.0824 [gr-qc].
- T. Nutma, “xTras : A field-theory inspired xAct package for mathematica,” Comput. Phys. Commun. 185 (2014) 1719–1738, arXiv:1308.3493 [cs.SC].
- M. B. Fröb, “FieldsX – An extension package for the xAct tensor computer algebra suite to include fermions, gauge fields and BRST cohomology,” arXiv:2008.12422 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.