Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Quantum Algorithm for Solving the Advection Equation using Hamiltonian Simulation (2312.09784v3)

Published 15 Dec 2023 in quant-ph

Abstract: A quantum algorithm for solving the advection equation by embedding the discrete time-marching operator into Hamiltonian simulations is presented. One-dimensional advection can be simulated directly since the central finite difference operator for first-order derivatives is anti-Hermitian. Here, this is extended to industrially relevant, multi-dimensional flows with realistic boundary conditions and arbitrary finite difference stencils. A single copy of the initial quantum state is required and the circuit depth grows linearly with the required number of time steps, the sparsity of the time-marching operator and the inverse of the allowable error. Statevector simulations of a scalar transported in a two-dimensional channel flow and lid-driven cavity configuration are presented as a proof of concept of the proposed approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. P. C. Costa, S. Jordan, and A. Ostrander, Quantum algorithm for simulating the wave equation, Physical Review A 99 (2019), 012323.
  2. A. M. Childs, J.-P. Liu, and A. Ostrander, High-precision quantum algorithms for partial differential equations, Quantum 5 (2021), 574.
  3. B. D. Clader, B. C. Jacobs, and C. R. Sprouse, Preconditioned quantum linear system algorithm, Physical Review Letters 110 (2013), 250504.
  4. A. Montanaro and S. Pallister, Quantum algorithms and the finite element method, Physical Review A 93 (2016), 032324.
  5. A. M. Childs and J.-P. Liu, Quantum spectral methods for differential equations, Communications in Mathematical Physics 375, 1427 (2020).
  6. O. Kyriienko, A. E. Paine, and V. E. Elfving, Solving nonlinear differential equations with differentiable quantum circuits, Physical Review A 103 (2021), 052416.
  7. D. W. Berry, High-order quantum algorithm for solving linear differential equations, Journal of Physics A: Mathematical and Theoretical 47 (2014), 105301.
  8. A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Physical Review Letters 103, 10.1103/PhysRevLett.103.150502 (2009), 150502.
  9. A. M. Childs, R. Kothari, and R. D. Somma, Quantum algorithm for systems of linear equations with exponentially improved dependence on precision, SIAM Journal on Computing 46, 1920 (2017).
  10. A. Suau, G. Staffelbach, and H. Calandra, Practical quantum computing: Solving the wave equation using a quantum approach, ACM Transactions on Quantum Computing 2, 1 (2021).
  11. L. Budinski, Quantum algorithm for the advection–diffusion equation simulated with the lattice boltzmann method, Quantum Information Processing 20 (2021).
  12. S. Jin, N. Liu, and Y. Yu, Quantum simulation of partial differential equations via schrodingerisation (2022), arXiv Preprint 2212.13969  (2022).
  13. S. Jin, N. Liu, and Y. Yu, Quantum simulation of partial differential equations: Applications and detailed analysis, Physical Review A 108 (2023), 032603.
  14. D. W. Berry, A. M. Childs, and R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in IEEE 56th Annual Symposium on Foundations of Computer Science (2015) pp. 792–809.
  15. R. M. Gingrich and C. P. Williams, Non-unitary probabilistic quantum computing, in Proceedings of the Winter International Symposium on Information and Communication Technologies (2004).
  16. R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen differenzengleichungen der mathematischen physik, Mathematische Annalen 100, 32 (1928).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.