Matching prior pairs connecting Maximum A Posteriori estimation and posterior expectation (2312.09586v2)
Abstract: Bayesian statistics has two common measures of central tendency of a posterior distribution: posterior means and Maximum A Posteriori (MAP) estimates. In this paper, we discuss a connection between MAP estimates and posterior means. We derive an asymptotic condition for a pair of prior densities under which the posterior mean based on one prior coincides with the MAP estimate based on the other prior. A sufficient condition for the existence of this prior pair relates to $\alpha$-flatness of the statistical model in information geometry. We also construct a matching prior pair using $\alpha$-parallel priors. Our result elucidates an interesting connection between regularization in generalized linear regression models and posterior expectation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.