Sparsity meets correlation in Gaussian sequence model (2312.09356v2)
Abstract: We study estimation of an $s$-sparse signal in the $p$-dimensional Gaussian sequence model with equicorrelated observations and derive the minimax rate. A new phenomenon emerges from correlation, namely the rate scales with respect to $p-2s$ and exhibits a phase transition at $p-2s \asymp \sqrt{p}$. Correlation is shown to be a blessing provided it is sufficiently strong, and the critical correlation level exhibits a delicate dependence on the sparsity level. Due to correlation, the minimax rate is driven by two subproblems: estimation of a linear functional (the average of the signal) and estimation of the signal's $(p-1)$-dimensional projection onto the orthogonal subspace. The high-dimensional projection is estimated via sparse regression and the linear functional is cast as a robust location estimation problem. Existing robust estimators turn out to be suboptimal, and we show a kernel mode estimator with a widening bandwidth exploits the Gaussian character of the data to achieve the optimal estimation rate.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.