Potential Perturbation of the Ionosphere by Megaconstellations and Corresponding Artificial Re-entry Plasma Dust (2312.09329v1)
Abstract: 500,000 to 1 million satellites are expected in the next decades, primarily to build internet constellations called megaconstellations. These megaconstellations are disposable and will constantly re-enter and be replaced, hence creating a layer of conductive particulate. Here it will be shown that the mass of the conductive particles left behind from worldwide distribution of re-entry satellites is already billions of times greater than the mass of the Van Allen Belts. From a preliminary analysis, the Debye length in spaceflight regions is significantly higher than non-spaceflight regions according to CCMC ionosphere data. As the megaconstellations grow, the Debye length of the satellite particulate may exceed that of the cislunar environment and create a conductive layer around the earth worldwide. Thus, satellite reentries may create a global band of plasma dust with a charge higher than the rest of the magnetosphere. Therefore, perturbation of the magnetosphere from conductive satellites and their plasma dust layer should be expected and should be a field of intensive research. Human activity is not only impacting the atmosphere, it is clearly impacting the ionosphere.
- Boley, A. and Byers, M., 2021, Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth, 11, 10642, Scientific Reports, doi: 10.1038/s41598-021-89909-7. [4] Champion, K. and Schaub, H., 2022, Effective Debye Lengths in Representative Cislunar Regions, 16th Spacecraft Charging Technology Conference. [5] Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Champion, K. and Schaub, H., 2022, Effective Debye Lengths in Representative Cislunar Regions, 16th Spacecraft Charging Technology Conference. [5] Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- Champion, K. and Schaub, H., 2022, Effective Debye Lengths in Representative Cislunar Regions, 16th Spacecraft Charging Technology Conference. [5] Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
- Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.