Papers
Topics
Authors
Recent
2000 character limit reached

Potential Perturbation of the Ionosphere by Megaconstellations and Corresponding Artificial Re-entry Plasma Dust (2312.09329v1)

Published 6 Dec 2023 in physics.ao-ph, astro-ph.EP, astro-ph.SR, and physics.space-ph

Abstract: 500,000 to 1 million satellites are expected in the next decades, primarily to build internet constellations called megaconstellations. These megaconstellations are disposable and will constantly re-enter and be replaced, hence creating a layer of conductive particulate. Here it will be shown that the mass of the conductive particles left behind from worldwide distribution of re-entry satellites is already billions of times greater than the mass of the Van Allen Belts. From a preliminary analysis, the Debye length in spaceflight regions is significantly higher than non-spaceflight regions according to CCMC ionosphere data. As the megaconstellations grow, the Debye length of the satellite particulate may exceed that of the cislunar environment and create a conductive layer around the earth worldwide. Thus, satellite reentries may create a global band of plasma dust with a charge higher than the rest of the magnetosphere. Therefore, perturbation of the magnetosphere from conductive satellites and their plasma dust layer should be expected and should be a field of intensive research. Human activity is not only impacting the atmosphere, it is clearly impacting the ionosphere.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. Boley, A. and Byers, M., 2021, Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth, 11, 10642, Scientific Reports, doi: 10.1038/s41598-021-89909-7. [4] Champion, K. and Schaub, H., 2022, Effective Debye Lengths in Representative Cislunar Regions, 16th Spacecraft Charging Technology Conference. [5] Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Champion, K. and Schaub, H., 2022, Effective Debye Lengths in Representative Cislunar Regions, 16th Spacecraft Charging Technology Conference. [5] Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  2. Champion, K. and Schaub, H., 2022, Effective Debye Lengths in Representative Cislunar Regions, 16th Spacecraft Charging Technology Conference. [5] Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  3. Mann, I., Gunnarsdottir, T., Häggström, I. et al, 2019, Radar studies of ionospheric dusty plasma phenomena, doi: 10.1002/ctpp.201900005. [6] McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  4. McDowell, J. Jonathan’s Space Report, 2023, 819, url: http://planet4589.org/space/con/star/stats.html. [7] McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  5. McDowell, J., Jonathan’s Space Report - Reentry masses, 2023, 819, url: http://www.planet4589.com/space/data/reentry/data/remass.txt. [8] McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  6. McDowell, J., Jonathan’s Space Report - Starlink Simulations, 2023, 819, url: https://planet4589.org/astro/starsim/index.html. [9] Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  7. Merlino, R., 2021, Dusty Plasmas: from Saturn’s rings to semiconductor processing devices, 6, Advances in Physics, doi: 10.1080/23746149.2021.1873859. [10] Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  8. Murphy, D., Abou-Ghanem, M., Cziczo, J., et al, 2023, Metals from spacecraft reentry in stratospheric aerosol particles, The Proceedings of the National Academy of Sciences, doi: 10.1073/pnas.2313374120. [11] Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  9. Schiermeier, Q., 2013, Mission to map Earth’s magnetic field readies for take-off, Nature, doi: 10.1038/nature.2013.14212. [12] Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  10. Senel, C., Kaskes, P., Temel, O. et al, 2023, Chicxulub impact winter sustained by fine silicate dust, Nature Geoscience, doi: 10.1038/s41561-023-01290-4. [13] Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.
  11. Yokoo, S., Hirose, K., Tagawa, S. and et al, 2022, Stratification in planetary cores by liquid immiscibility in Fe-S-H, Nature Communications, doi: 10.1038/s41467-022-28274-z.

Summary

  • The paper quantifies that re-entering satellites can deposit up to 26,308 kg of material daily, far surpassing the natural mass of the Van Allen Belts.
  • The study finds that the influx of conductive debris increases the Debye length and electron density, potentially destabilizing Earth's ionospheric and magnetospheric balance.
  • The research calls for improved atmospheric modeling and international policy interventions to mitigate the long-term effects of artificial plasma dust layers.

Potential Perturbation of the Ionosphere by Megaconstellations and Corresponding Artificial Re-entry Plasma Dust

The research work titled "Potential Perturbation of the Ionosphere by Megaconstellations and Corresponding Artificial Re-entry Plasma Dust" by S. Solter-Hunt presents a comprehensive examination of the implications of the growing volume of satellite megaconstellations on Earth's ionosphere and magnetosphere. Focusing on megaconstellations designed for achieving expansive internet coverage, this paper addresses the significant perturbations that could arise from the frequent re-entry of these satellites and the resultant creation of a conductive particulate layer in the lower ionosphere.

Overview and Key Findings

The study identifies an escalating trend where the destructive re-entry of a vast number of satellites results in the deposition of conductive particulates. The paper provides a comparative analysis, showing that the mass of these particles will surpass the natural mass of the Van Allen Belts by millions of times. Such an increase significantly contributes to the atmospheric particulate content, leading to a potentially conductive layer that might perturb the magnetosphere.

1. Mass Considerations:

  • Megaconstellations, exemplified by the Starlink project with projected deployments of 42,000 satellites, represent a substantial mass increase in the ionosphere. Each satellite re-entry deposits approximately 1250 kg of material, which translates to about 26,308 kg of mass introduced to the ionosphere daily in terms of the Starlink project alone.
  • Compared to the Van Allen Belts, the continuous influx of debris is noted to be at scales orders of magnitude greater than any natural particulate system within the magnetosphere.

2. Ionosphere and Magnetosphere Implications:

  • The paper posits that the Debye length within spaceflight regions is increasing, primarily due to the influx of conductive materials such as aluminum. These materials are shown to raise the Debye length significantly, potentially exceeding current magnitudes in the cislunar environment.
  • Enhanced electron density and ion interaction could result in a zone of increased electrical conductivity, impacting satellite operations and altering natural magnetospheric structures.

3. Theoretical and Practical Implications:

  • The formation of an artificial plasma dust layer represents a potential threat to both satellite functionality and atmospheric conditions due to interference with natural magnetic fields.
  • The work underscores the need for enhanced chemical and atmospheric modelling to understand better the long-term impacts of this anthropogenic activity.

Future Developments

The observations and projections contained within this study call for immediate interdisciplinary research to model accurately and mitigate the effects of this technological progression. As the satellite industry continues to expand without complete empirical understanding of the ionospheric influences, Solter-Hunt suggests the necessity for industry investment in more accurate study, as existing models are insufficient for simulated assessments of such expansive scales.

Furthermore, there is a critical call for international policy consideration regarding space as an environmental domain requiring protection equivalent to terrestrial environments. Failure to address these developments effectively could result in unforeseen consequences for planetary atmospheric conditions, much like those observed with earthbound environmental degradation.

In summary, while satellite megaconstellations promise significant benefits for global communication infrastructure, they present equally considerable challenges to Earth's atmospheric integrity which must be researched and managed with urgency. The potential for a persistent and expansive layer of conductive particulate due to satellite re-entry processes necessitates renewed focus on methodological advancements in both modeling and measurement to avert disturbances to the magnetosphere and the broader consequences for Earth's atmospheric systems.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 52 tweets with 11738 likes about this paper.