Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tuning the Josephson diode response with an ac current (2312.09204v1)

Published 14 Dec 2023 in cond-mat.supr-con and cond-mat.mes-hall

Abstract: Josephson diodes are superconducting elements that show an asymmetry in the critical current depending on the direction of the current. Here, we theoretically explore how an alternating current bias can tune the response of such a diode. We show that for slow driving there is always a regime where the system can only carry zero-voltage dc current in one direction, thus effectively behaving as an ideal Josephson diode. Under fast driving, the diode efficiency is also tunable, although the ideal regime cannot be reached in this case. We also investigate the residual dissipation due to the time-dependent current bias and show that it remains small. All our conclusions are solely based on the critical current asymmetry of the junction, and are thus compatible with any Josephson diode.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A. I. Braginski, Superconductor electronics: Status and outlook, Journal of Superconductivity and Novel Magnetism 32, 23 (2019).
  2. I. Margaris, V. Paltoglou, and N. Flytzanis, Zero phase difference supercurrent in ferromagnetic josephson junctions, Journal of Physics: Condensed Matter 22, 445701 (2010).
  3. T. Yokoyama, M. Eto, and Y. V. Nazarov, Anomalous josephson effect induced by spin-orbit interaction and zeeman effect in semiconductor nanowires, Phys. Rev. B 89, 195407 (2014).
  4. F. Dolcini, M. Houzet, and J. S. Meyer, Topological josephson ϕ0subscriptitalic-ϕ0{\phi}_{0}italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT junctions, Phys. Rev. B 92, 035428 (2015).
  5. V. K. Semenov, Y. A. Polyakov, and S. K. Tolpygo, New ac-powered sfq digital circuits, IEEE Transactions on Applied Superconductivity 25, 1 (2015).
  6. R. Wakatsuki and N. Nagaosa, Nonreciprocal current in noncentrosymmetric rashba superconductors, Phys. Rev. Lett. 121, 026601 (2018).
  7. S. Pal and C. Benjamin, Quantized josephson phase battery, Europhysics Letters 126, 57002 (2019).
  8. A. A. Kopasov, A. G. Kutlin, and A. S. Mel’nikov, Geometry controlled superconducting diode and anomalous josephson effect triggered by the topological phase transition in curved proximitized nanowires, Phys. Rev. B 103, 144520 (2021).
  9. J. J. He, Y. Tanaka, and N. Nagaosa, A phenomenological theory of superconductor diodes, New Journal of Physics 24, 053014 (2022).
  10. A. Daido, Y. Ikeda, and Y. Yanase, Intrinsic superconducting diode effect, Phys. Rev. Lett. 128, 037001 (2022).
  11. M. Davydova, S. Prembabu, and L. Fu, Universal josephson diode effect, Sci. Adv. 8, eabo0309 (2022).
  12. R. S. Souto, M. Leijnse, and C. Schrade, Josephson diode effect in supercurrent interferometers, Phys. Rev. Lett. 129, 267702 (2022).
  13. Y. V. Fominov and D. S. Mikhailov, Asymmetric higher-harmonic squid as a josephson diode, Phys. Rev. B 106, 134514 (2022).
  14. Y. Tanaka, B. Lu, and N. Nagaosa, Theory of giant diode effect in d𝑑ditalic_d-wave superconductor junctions on the surface of a topological insulator, Phys. Rev. B 106, 214524 (2022).
  15. N. F. Yuan and L. Fu, Supercurrent diode effect and finite-momentum superconductors, Proceedings of the National Academy of Sciences 119, e2119548119 (2022).
  16. T. H. Kokkeler, A. A. Golubov, and F. S. Bergeret, Field-free anomalous junction and superconducting diode effect in spin-split superconductor/topological insulator junctions, Phys. Rev. B 106, 214504 (2022).
  17. S. Ilić and F. S. Bergeret, Theory of the supercurrent diode effect in rashba superconductors with arbitrary disorder, Phys. Rev. Lett. 128, 177001 (2022).
  18. R. Haenel and O. Can, Superconducting diode from flux biased josephson junction arrays, arXiv:2212.02657  (2022).
  19. H. F. Legg, D. Loss, and J. Klinovaja, Superconducting diode effect due to magnetochiral anisotropy in topological insulators and rashba nanowires, Phys. Rev. B 106, 104501 (2022).
  20. D. Wang, Q.-H. Wang, and C. Wu, Symmetry constraints on direct-current josephson diodes, arXiv:2209.12646  (2022).
  21. T. Kokkeler, I. Tokatly, and S. Bergeret, Nonreciprocal superconducting transport and the spin hall effect in gyrotropic structures, arXiv:2309.00495  (2023).
  22. S. Banerjee and M. S. Scheurer, Enhanced superconducting diode effect due to coexisting phases, arXiv:2304.03303  (2023).
  23. J. J. He, Y. Tanaka, and N. Nagaosa, The supercurrent diode effect and nonreciprocal paraconductivity due to the chiral structure of nanotubes, Nature Communications 14, 3330 (2023).
  24. Y. Lu, I. V. Tokatly, and F. S. Bergeret, Superconductivity induced ferromagnetism in the presence of spin-orbit coupling, arXiv:2307.10723  (2023b).
  25. A. Costa, J. Fabian, and D. Kochan, Microscopic study of the josephson supercurrent diode effect in josephson junctions based on two-dimensional electron gas, Phys. Rev. B 108, 054522 (2023).
  26. K. Chen, B. Karki, and P. Hosur, Intrinsic superconducting diode effects in tilted weyl and dirac semimetals, arXiv:2309.11501  (2023).
  27. J. Cayao, N. Nagaosa, and Y. Tanaka, Enhancing the josephson diode effect with majorana bound states, arXiv:2309.15567  (2023).
  28. Z. Liu, L. Huang, and J. Wang, Josephson diode effect in topological superconductor, arXiv:2311.09009  (2023).
  29. M. Nadeem, M. S. Fuhrer, and X. Wang, The superconducting diode effect, Nature Reviews Physics 5, 558 (2023).
  30. A. Daido and Y. Yanase, Unidirectional superconductivity and diode effect induced by dissipation, arXiv:2310.02539  (2023).
  31. C. Ortega-Taberner, A.-P. Jauho, and J. Paaske, Anomalous josephson current through a driven double quantum dot, Phys. Rev. B 107, 115165 (2023).
  32. A. Soori, Nonequilibrium josephson diode effect in periodically driven sns junctions, Physica Scripta 98, 065917 (2023).
  33. C. W. J. Beenakker, Universal limit of critical-current fluctuations in mesoscopic josephson junctions, Phys. Rev. Lett. 67, 3836 (1991).
  34. D. Niepce, J. Burnett, and J. Bylander, High kinetic inductance NbNNbN\mathrm{Nb}\mathrm{N}roman_NbN nanowire superinductors, Phys. Rev. Appl. 11, 044014 (2019).
  35. A. Glezer Moshe, E. Farber, and G. Deutscher, Granular superconductors for high kinetic inductance and low loss quantum devices, Applied Physics Letters 117, 062601 (2020).
Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.