Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

A Vision for the Science of Rare Isotopes (2312.09129v1)

Published 14 Dec 2023 in nucl-ex and nucl-th

Abstract: The field of nuclear science has considerably advanced since its beginning just over a century ago. Today, the science of rare isotopes is on the cusp of a new era with theoretical and computing advances complementing experimental capabilities at new facilities internationally. In this article we present a vision for the science of rare isotope beams (RIBs). We do not attempt to cover the full breadth of the field, but rather provide a perspective and address a selection of topics that reflect our own interests and expertise. We focus in particular on systems near the drip lines, where one often finds nuclei that are referred to as "exotic," and where the role of the "nuclear continuum" is only just starting to be explored. An important aspect of this article is the attempt to highlight the crucial connections between nuclear structure and nuclear reactions required to fully interpret and leverage the rich data to be collected in the next years at RIB facilities. Further, we connect the efforts in structure and reactions to key questions of nuclear astrophysics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (248)
  1. Goeppert-Mayer M. Phys. Rev. 75:1969 (1949)
  2. Rev. Mod. Phys. 76:215 (2004)
  3. Kofoed-Hansen O, Nielsen KO. Phys. Rev. 82(1):96–97 (1951)
  4. Thoennessen M. Rep. Prog. Phys. 67:1187 (2004)
  5. Rev. Mod. Phys. 29(4):547–650 (1957)
  6. Nature Physics 18(10):1196–1200 (2022)
  7. Navrátil P, Quaglioni S. Ab Initio Nuclear Reaction Theory with Applications to Astrophysics (2022)
  8. Thoennessen M. Nucl. Data Sheets 118:85 (2014)
  9. Phys. Rev. Lett. 129(21):212502 (2022)
  10. Community FS. FRIB400: The Scientific Case for the 400 MeV/u Energy Upgrade of FRIB. Tech. rep., Michigan State University (2019)
  11. Rutherford E. Phil. Mag. 21:669 (1911)
  12. Phys. Rev. 75:1766 (1949)
  13. Rainwater J. Phys. Rev. 79:432 (1950)
  14. Bohr A. Dan. Mat. Fys. Medd. 26:1 (1952)
  15. Bohr A, Mottelson BR. Mat. Fys. Medd. Dan. Vid. Selsk. 27:1 (1953)
  16. Heyde K. Phys. Scr. T 152:014006 (2013)
  17. Elliott JP, Flowers BH. Proc. R. Soc. Lond. A 229:536 (1955)
  18. Elliot JP. Proc. R. Soc. Lond. A 245:128 (1958)
  19. Elliot JP. Proc. R. Soc. Lond. A 245:562 (1958)
  20. Bethe HA. Phys. Rev. 103:1353 (1956)
  21. Brueckner KA, Levinson CA. Phys. Rev. 97:1344 (1955)
  22. Goldstone J. Proc. R. Soc. Lond. A 239:267 (1957)
  23. Yukawa H. Proc. Phys. -Math. Soc. Japan 17:48 (1935)
  24. Rev. Mod. Phys. 81:1773 (2009)
  25. Machleidt R. Int. J. Mod. Phys. E 26(11):1730005 (2017)
  26. Brown BA. Prog. Part. Nucl. Phys. 47:517 (2001)
  27. Rev. Mod. Phys. 77:427 (2005)
  28. Brown BA, Richter WA. Phys. Rev. C 74:034315 (2006)
  29. Prog. Part. Nucl. Phys. 47:319 (2001)
  30. Ann. Rev. Nucl. Part. Sci. 69:307 (2019)
  31. Rev. Mod. Phys. 92:015002 (2020)
  32. Prog. Part. Nucl. Phys. 68:215 (2013)
  33. Hansen PG, Jonson B. Europhys. Lett. 4:409 (1987)
  34. Canham DL, Hammer HW. Eur. Phys. J. A 37:367 (2008)
  35. Prog. Part. Nucl. Phys. 67:939 (2012)
  36. Nucl. Phys. A 712:37–58 (2002)
  37. J. Phys. G 44(10):103002 (2017)
  38. Rev. Mod. Phys. 92(2):025004 (2020)
  39. J. Phys. G 37:064042 (2010)
  40. Prog. Theor. Phys. Supp. 196:230 (2012)
  41. Kravvaris K, Volya A. Phys. Rev. C 100:034321 (2019)
  42. Hamamoto I, Mottelson BR. Phys. Rev. C 69:064302 (2004)
  43. Phys. Rev. C 89:061305(R) (2014)
  44. Moiseyev N. Phys. Rep. 302:212 (1998)
  45. Phys. Rep. 374:271 (2003)
  46. Civitarese O, Gadella M. Phys. Rep. 396:41 (2004)
  47. Michel N, Płoszajczak M. Springer, 1st ed. (2021)
  48. Rev. Mod. Phys. 84:567 (2012)
  49. Acta Phys. Pol. 44:543 (2013)
  50. Prog. Part. Nucl. Phys. 132 (2023)
  51. Auerbach N, Zelevinsky V. Rep. Prog. Phys. 74:106301 (2011)
  52. Eleuch H, Rotter I. Eur. Phys. J. D 68:74 (2014)
  53. J. Phys. G 36:013101 (2009)
  54. Volya A, Zelevinsky V. Phys. Rev. Lett. 94:052501 (2005)
  55. Phys. Scr. 91:053002 (2016)
  56. Weinberg S. Phys. Lett. B 251:288–292 (1990)
  57. Rho M. Phys. Rev. Lett. 66:1275–1278 (1991)
  58. Weinberg S. Nucl. Phys. B 363:3–18 (1991)
  59. Ordóñez C, van Kolck U. Phys. Lett. B 291:459–464 (1992)
  60. Weinberg S. Phys. Lett. B 295:114–121 (1992)
  61. van Kolck UL. 1993. Soft Physics: Applications of Effective Chiral Lagrangians to Nuclear Physics and Quark Models. Ph.D. thesis, Texas U.
  62. Machleidt R, Entem DR. Phys. Rep. 503:1 (2011)
  63. Phys. Rev. C 51:38 (1995)
  64. Suzuki K, Lee SY. Prog. Theor. Phys. 64:2091 (1980)
  65. Prog. Part. Nucl. Phys. 65:94 (2010)
  66. Rep. Prog. Phys. 77:096302 (2014)
  67. Phys. Rep. 621:165 (2016)
  68. Phys. Rev. C 12(2):644–657 (1975)
  69. Phys. Rev. C 18(5):2342–2354 (1978)
  70. Phys. Rev. C 19(1):164–176 (1979)
  71. Wildenthal BH, Chung W. Phys. Rev. C 22:2260 (1980)
  72. Poves A, Retamosa J. Phys. Lett. B 184:311 (1987)
  73. Phys. Rev. C 41(3):1147–1166 (1990)
  74. Brown BA. Physics 3:104 (2010)
  75. Phys. Rev. Lett. 117(27):272501 (2016)
  76. Phys. Rev. C 31(6):2226–2237 (1985)
  77. Phys. Rev. C 74(2):021302 (2006)
  78. Nature 502(7470):207–210 (2013)
  79. Progress in Particle and Nuclear Physics 124:103931 (2022)
  80. Ahmad I, Butler PA. Annual Review of Nuclear and Particle Science 43(1):71–116 (1993)
  81. Rowe DJ. World Scientific, 1st ed. (2010)
  82. Phys. Rev. C 101(2):021303 (2020)
  83. Physics Letters B 809:135678 (2020)
  84. Nucl. Instr. Meth. Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment 668:26–58 (2012)
  85. Team GP. The gamma-ray energy tracking array (greta) final design report. Tech. rep., Lawrence Berkeley National Laboratory (2020)
  86. J. Phys. G 46:093003 (2019)
  87. Lattimer JM. Annu. Rev. Nucl. Part. Sci. 71:433 (2021)
  88. Phys. Rev. Lett. 117:132501 (2016)
  89. Phys. Lett. B 797:134863 (2019)
  90. Federman P, Pittel S. Phys. Rev. C 20:820 (1979)
  91. Phys. Rev. Lett. 60:2254 (1988)
  92. Pittel S, Federman P. Int. J. Mod. Phys. E 2 Supp. 01:3 (1993)
  93. Nazarewicz W. Nucl. Phys. A 574:27 (1994)
  94. Phys. Lett. B 822:136710 (2021)
  95. Phys. Rev. Lett. 122(5):052501 (2019)
  96. Bertsch GF, Esbensen H. Ann. Phys. 209:327 (1991)
  97. Hagino K, Sagawa H. Phys. Rev. C 72:044321 (2005)
  98. Phys. Rev. Lett. 131:172501 (2023)
  99. Phys. Rev. Lett. 72(7):981–984 (1994)
  100. Goldanskii VI. Annu. Rev. Nucl. Sci. 16:1 (1966)
  101. Phys. Rev. C 93:011305(R) (2016)
  102. Moshinsky M. Phys. Rev. 88:625 (1952)
  103. Khalfin LA. Sov. Phys. JETP 6:1053 (1958)
  104. EPL 107:40001 (2014)
  105. Phys. Rev. Res. 5:023183 (2023)
  106. Hammer HW, König S. Phys. Lett. B 736:208 (2014)
  107. Phys. Rev. Lett. 120:152504 (2018)
  108. Phys. Rev. Lett. 125:252501 (2020)
  109. Phys. Rev. C 104:024001 (2021)
  110. Yamagami M. Phys. Rev. C 106:044316 (2022)
  111. Phys. Lett. B 840:137875 (2023)
  112. Phys. Rev. Lett. 116:052501 (2016)
  113. Nature 606:678 (2022)
  114. Phys. Rev. C 93:044004 (2016)
  115. Phys. Rev. Lett. 117:182502 (2016)
  116. Phys. Rev. Lett. 119:032501 (2017)
  117. Phys. Rev. Lett. 118:232501 (2017)
  118. Phys. Rev. C 100:054313 (2019)
  119. Deltuva A. Phys. Lett. B 782:238 (2018)
  120. Phys. Rev. Lett. 125:052501 (2020)
  121. Phys. Rev. Lett. 130:102501 (2023)
  122. Lazauskas R. Few-Body Syst. 59:13 (2018)
  123. Phys. Lett. B 791:335 (2019)
  124. Phys. Rev. C 95:014310 (2017)
  125. Phys. Rev. Lett. 99:062502 (2007)
  126. Phys. Rev. C 78:044001 (2008)
  127. Phys. Rev. Lett. 124:022502 (2020)
  128. Phys. Rev. C 103:044313 (2021)
  129. Phys. Rev. Lett. 123:212501 (2019)
  130. Chinese Physics C 45(3):030002 (2021)
  131. Phys. Rev. Lett. 124:152502 (2020)
  132. Phys. Rev. Lett. 124:222504 (2020)
  133. Prog. Part. Nucl. Phys. 89:101 (2016)
  134. Phys. Rev. C 88:024001 (2013)
  135. Phys. Rev. C 108:L011304 (2023)
  136. Phys. Rev. Lett. 111(21):212502 (2013)
  137. Phys. Rev. C 94:054302 (2016)
  138. Phys. Rev. C 104:014307 (2021)
  139. Fossez K, Rotureau J. Phys. Rev. C 106:034312 (2022)
  140. Wang SM, Nazarewicz W. Phys. Rev. Lett. 126:142501 (2021)
  141. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 918:9–29 (2019)
  142. A next generation experimental setup for studies of reactions with relativistic radioactive beams. https://www.gsi.de/work/forschung/nustarenna/nustarenna_divisions/kernreaktionen/activities/r3b Accessed: 2023-10-08
  143. Phys. Rev. Lett. 124(21):212502 (2020)
  144. Eur. Phys. J. A 50(1):8 (2014)
  145. Eur. Phys. J. A 59(6):121 (2023)
  146. Phys. Rev. D 92(11):114512 (2015), [Erratum: Phys.Rev.D 102, 039903 (2020)]
  147. Phys. Lett. B 765:285–292 (2017)
  148. Phys. Rev. D 92(1):014501 (2015)
  149. Aoki S, Doi T (2023). Lattice QCD and Baryon-Baryon Interactions. 1–31
  150. Phys. Rev. Lett. 119(6):062002 (2017)
  151. Detmold W, Shanahan PE. Phys. Rev. D 103(7):074503 (2021)
  152. Illa M. PoS LATTICE2021:378 (2022)
  153. van Kolck U. Prog. Part. Nucl. Phys. 43:337 (1999)
  154. van Kolck U. Nucl. Phys. A 645:273 (1999)
  155. Nucl. Phys. A 653:386 (1999)
  156. Steele JV, Furnstahl RJ. Nucl. Phys. A 645:439 (1999)
  157. Bedaque PF, van Kolck U. Annu. Rev. Nucl. Part. Sci. 52:339 (2002)
  158. Annual Review of Nuclear and Particle Science 58(1):27–49 (2008)
  159. Leidemann W, Orlandini G. Prog. Part. Nucl. Phys. 68:158–214 (2013)
  160. J. Phys. G 47(5):054002 (2020)
  161. Premarathna P, Rupak G. Eur. Phys. J. A 56(6):166 (2020)
  162. Hammer HW, Phillips DR. Nucl. Phys. A 865:17–42 (2011)
  163. Phys. Rev. C 98(3):034610 (2018)
  164. Phys. Rev. Lett. 111(13):132501 (2013)
  165. Lüscher M. Nucl. Phys. B 354(2-3):531–578 (1991), publisher: North-Holland
  166. Phys. Rev. D 105(7):074508 (2022)
  167. Constraint of pionless EFT using two-nucleon spectra from lattice QCD (2023)
  168. Lee D. Prog. Part. Nucl. Phys. 63:117–154 (2009)
  169. Elhatisari S, et al. (2022)
  170. Phys. Rev. C 98(3):034004 (2018)
  171. König S. Few Body Syst. 61(3):20 (2020)
  172. EPJ Web Conf. 271:01011 (2022)
  173. Phys. Rev. C 105(6):064002 (2022)
  174. Yapa N, König S. Phys. Rev. C 106(1):014309 (2022)
  175. König S. J. Phys. Conf. Ser. 2453(1):012025 (2023)
  176. Phys. Rev. C (in press) (2023)
  177. Phys. Rev. Lett. 118(20):202501 (2017)
  178. König S. J. Phys. G 44(6):064007 (2017)
  179. König S. Eur. Phys. J. A 56(4):113 (2020)
  180. Phys. Rev. C 100(3):034004 (2019)
  181. Ann. Rev. Nucl. Part. Sci. 71:465–490 (2021)
  182. Phys. Rev. Lett. 121(7):072701 (2018)
  183. Vanasse J, Phillips DR. Few Body Syst. 58(2):26 (2017)
  184. Eur. Phys. J. A 57(9):276 (2021)
  185. Phys. Rev. C 94(3):034003 (2016)
  186. Phys. Rev. C 98(5):054301 (2018)
  187. Phys. Rev. C 98(6):061302 (2018)
  188. Papenbrock T. Nucl. Phys. A 852:36 (2011)
  189. Papenbrock T, Weidenmüller HA. J. Phys. G 42:106103 (2015)
  190. Phys. Rev. C 89:034624 (2014)
  191. Phys. Rev. C 91:034609 (2015)
  192. Phys. Rev. C 99:044606 (2019)
  193. Annu. Rev. Nucl. Part. Sci. 71:253 (2021)
  194. Hebborn C, et al. J. Phys. G 50(6):060501 (2023)
  195. Holt JW, Whitehead TR (2022). Modern Approaches to Optical Potentials. 1–30
  196. Phys. Rev. C 95:024315 (2017)
  197. Lazauskas R, Carbonell J. Front. in Phys. 7:251 (2020)
  198. Lüscher M. Comm. Math. Phys. 104(2):177–206 (1986)
  199. Phys. Rev. Lett. 107:112001 (2011)
  200. König S, Lee D. Phys. Lett. B 779:9–15 (2018)
  201. Phys. Rev. Lett. 131(21):212502 (2023)
  202. Phys. Rev. C 107(6):064316 (2023)
  203. Hansen PG, Tostevin JA. Annual Review of Nuclear and Particle Science 53:219–261 (2003)
  204. Rev. Mod. Phys. 69(3):981–991 (1997)
  205. Phys. Rev. C 77(4):044306 (2008)
  206. Tostevin JA, Gade A. Phys. Rev. C 90(5):057602 (2014)
  207. Tostevin JA, Gade A. Phys. Rev. C 103(5):054610 (2021)
  208. Nature 560(7720):617–621 (2018)
  209. Physics Letters B 800:135110 (2020)
  210. Phys. Rev. C 92(3):034313 (2015)
  211. Furnstahl RJ. 2013. In International Conference on Nuclear Theory in the Supercomputing Era
  212. Phys. Rev. C 104(3):034311 (2021)
  213. Phys. Rev. C 106(2):024616 (2022)
  214. Phys. Rev. Lett. 114(1):012501 (2015)
  215. Eur. Phys. J. A 52(4):92 (2016)
  216. Eur. Phys. J. A 57(3):103 (2021)
  217. Phys. Rev. Lett. 120(5):052501 (2018)
  218. Prog. Part. Nucl. Phys. 107:69 (2019)
  219. Merrill PW. Astrophys. J. 116:21 (1952)
  220. Astrophys. J. 830(2):55 (2016)
  221. Rev. Mod. Phys. 83:157–194 (2011)
  222. Rev. Mod. Phys. 93(1):015002 (2021)
  223. Rep. Prog. Phys. 76:066201 (2013)
  224. Phys. Rev. Lett. 96:142502 (2006)
  225. Arcones A, Montes F. Astrophys. J. 731:5 (2011)
  226. ApJ 727:89 (2011)
  227. Blake JB, Schramm DN. ApJ 209:846–849 (1976)
  228. Nucl. Phys. A 758:603–606 (2005)
  229. J. Phys. G: Nucl. Part. Phys. 46(8):083001 (2019)
  230. Bender M, et al. J. Phys. G 47(11):113002 (2020)
  231. Rep. Prog. Phys. 84(6):066301 (2021)
  232. Nature 505:62 (2014)
  233. Phys. Rev. Lett. 125(26):262701 (2020)
  234. Phys. Rev. Lett. 114(19):192501 (2015)
  235. Phys. Rev. Lett. 129(17):172701 (2022)
  236. Phys. Rev. C 103(2):025810 (2021)
  237. Prog. Part. Nucl. Phys. 98:55–84 (2018)
  238. Eur. Phys. J. 50:99 (2014)
  239. Phys. Rev. C 105(6):065804 (2022)
  240. Phys. Rev. C 107(3):035808 (2023)
  241. Phys. Rev. Lett. 122(9):092701 (2019)
  242. Phys. Rev. Lett. 127(11):112701 (2021)
  243. J. Phys. G 44(5):054003 (2017)
  244. Nuclear Instruments and Methods in Physics Research A 859:63–68 (2017)
  245. Phys. Rev. Lett. 111(8):082502 (2013)
  246. Nature 398(6727):489–492 (1999)
  247. Krainov V, Smirnov M. Phys. Rep. 370(3):237–331 (2002)
  248. Phys. Rev. Lett. 111(5):055002 (2013)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.