Papers
Topics
Authors
Recent
Search
2000 character limit reached

Localization with Reconfigurable Intelligent Surface: An Active Sensing Approach

Published 14 Dec 2023 in cs.IT, cs.LG, eess.SP, and math.IT | (2312.09002v2)

Abstract: This paper addresses an uplink localization problem in which a base station (BS) aims to locate a remote user with the help of reconfigurable intelligent surfaces (RISs). We propose a strategy in which the user transmits pilots sequentially and the BS adaptively adjusts the sensing vectors, including the BS beamforming vector and multiple RIS reflection coefficients based on the observations already made, to eventually produce an estimated user position. This is a challenging active sensing problem for which finding an optimal solution involves searching through a complicated functional space whose dimension increases with the number of measurements. We show that the long short-term memory (LSTM) network can be used to exploit the latent temporal correlation between measurements to automatically construct scalable state vectors. Subsequently, the state vector is mapped to the sensing vectors for the next time frame via a deep neural network (DNN). A final DNN is used to map the state vector to the estimated user position. Numerical result illustrates the advantage of the active sensing design as compared to non-active sensing methods. The proposed solution produces interpretable results and is generalizable in the number of sensing stages. Remarkably, we show that a network with one BS and multiple RISs can outperform a comparable setting with multiple BSs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Z. Zhang, T. Jiang, and W. Yu, “Active sensing for localization with reconfigurable intelligent surface,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2023, pp. 4261–4266.
  2. R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and H. Wymeersch, “Location-aware communications for 5G networks: How location information can improve scalability, latency, and robustness of 5G,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 102–112, Oct. 2014.
  3. A. Bourdoux et al., “6G white paper on localization and sensing,” 2020. [Online]. Available: https://arxiv.org/abs/2006.01779
  4. P. Palaskar, R. Palkar, and M. Tawari, “Wi-Fi indoor positioning system based on RSSI measurements from Wi-Fi access points -a tri-lateration approach,” Int. J. Scientific Eng. Res., vol. 5, no. 4, pp. 1234–1238, Apr. 2014.
  5. Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems for wireless personal networks,” IEEE Commun. Surveys Tutorials, vol. 11, no. 1, pp. 13–32, Mar. 2009.
  6. E. Y. Menta, N. Malm, R. Jäntti, K. Ruttik, M. Costa, and K. Leppänen, “On the performance of AoA–based localization in 5G ultra–dense networks,” IEEE Access, vol. 7, pp. 33 870–33 880, Mar. 2019.
  7. J. Xu, M. Ma, and C. L. Law, “AOA cooperative position localization,” in Proc. IEEE Global Commun. (Globecom), Nov. 2008, pp. 1–5.
  8. C. L. Nguyen, O. Georgiou, G. Gradoni, and M. Di Renzo, “Wireless fingerprinting localization in smart environments using reconfigurable intelligent surfaces,” IEEE Access, vol. PP, pp. 1–1, Sept. 2021.
  9. M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Select. Areas Commun., vol. 38, no. 11, pp. 2450–2525, Jul. 2020.
  10. E. Basar, M. Di Renzo, J. de Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, “Wireless communications through reconfigurable intelligent surfaces,” IEEE Access, vol. 7, pp. 116 753–116 773, Aug. 2019.
  11. F. Liu, O. Tsilipakos, A. Pitilakis, A. C. Tasolamprou, M. S. Mirmoosa, N. V. Kantartzis, D.-H. Kwon, M. Kafesaki, C. M. Soukoulis, and S. A. Tretyakov, “Intelligent metasurfaces with continuously tunable local surface impedance for multiple reconfigurable functions,” Phys. Rev. A Gen. Phys., vol. 11, no. 4, pp. 2331–7019, Apr. 2019.
  12. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nature Commun., vol. 8, no. 1, p. 197, Aug. 2017.
  13. C. Pan et al., “An overview of signal processing techniques for RIS/IRS-aided wireless systems,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 1–35, Aug. 2022.
  14. J. He, H. Wymeersch, T. Sanguanpuak, O. Silven, and M. Juntti, “Adaptive beamforming design for mmWave RIS-aided joint localization and communication,” in Proc. IEEE Wireless Commun. Netw. Conf. Workshops (WCNCW), Apr. 2020, pp. 1–6.
  15. Y. Liu, E. Liu, R. Wang, and Y. Geng, “Reconfigurable intelligent surface aided wireless localization,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2021, pp. 1–6.
  16. K. Keykhosravi, M. F. Keskin, G. Seco-Granados, and H. Wymeersch, “SISO RIS-enabled joint 3D downlink localization and synchronization,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2021, pp. 1–6.
  17. Z. Abu-Shaban, K. Keykhosravi, M. F. Keskin, G. C. Alexandropoulos, G. Seco-Granados, and H. Wymeersch, “Near-field localization with a reconfigurable intelligent surface acting as lens,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2021, pp. 1–6.
  18. Y. Lin, S. Jin, M. Matthaiou, and X. You, “Channel estimation and user localization for IRS-assisted MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2320–2335, Apr. 2022.
  19. H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, “Towards ubiquitous positioning by leveraging reconfigurable intelligent surface,” IEEE Commun. Lett., vol. 25, no. 1, pp. 284–288, Sept. 2021.
  20. ——, “Metalocalization: Reconfigurable intelligent surface aided multi-user wireless indoor localization,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7743–7757, Jun. 2021.
  21. R. Wang, Z. Xing, E. Liu, and J. Wu, “Joint localization and communication study for intelligent reflecting surface aided wireless communication system,” IEEE Trans. Wireless Commun., vol. 71, no. 5, pp. 3024–3042, Feb. 2023.
  22. A. Elzanaty, A. Guerra, F. Guidi, and M.-S. Alouini, “Reconfigurable intelligent surfaces for localization: Position and orientation error bounds,” IEEE Trans. Signal Process., vol. 69, pp. 5386–5402, Aug. 2021.
  23. H. Wymeersch and B. Denis, “Beyond 5G wireless localization with reconfigurable intelligent surfaces,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–6.
  24. Y. Liu, S. Hong, C. Pan, Y. Wang, Y. Pan, and M. Chen, “Cramér-rao lower bound analysis of multiple-RIS-aided mmWave positioning systems,” in Proc. IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Sept. 2022, pp. 1110–1115.
  25. F. Sohrabi, Z. Chen, and W. Yu, “Deep active learning approach to adaptive beamforming for mmWave initial alignment,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing (ICASSP), Jun. 2021, pp. 4940–4944.
  26. F. Sohrabi, T. Jiang, W. Cui, and W. Yu, “Active sensing for communications by learning,” IEEE J. Select. Areas Commun., vol. 40, no. 6, pp. 1780–1794, Jun. 2022.
  27. S. Chiu, N. Ronquillo, and T. Javidi, “Active learning and CSI acquisition for mmwave initial alignment,” IEEE J. Select. Areas Commun., vol. 37, no. 11, pp. 2474–2489, Nov. 2019.
  28. F. Sohrabi, Z. Chen, and W. Yu, “Deep active learning approach to adaptive beamforming for mmWave initial alignment,” IEEE J. Select. Areas Commun., vol. 39, no. 8, pp. 2347–2360, Aug. 2021.
  29. A. Sant, A. Abdi, and J. Soriaga, “Deep sequential beamformer learning for multipath channels in mmwave communication systems,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing (ICASSP), May 2022, pp. 5198–5202.
  30. H. Han, T. Jiang, and W. Yu, “Active beam tracking with reconfigurable intelligent surface,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing (ICASSP), Jun. 2023, pp. 1–5.
  31. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.
  32. T. Jiang, H. V. Cheng, and W. Yu, “Learning to reflect and to beamform for intelligent reflecting surface with implicit channel estimation,” IEEE J. Select. Areas Commun., vol. 39, no. 7, pp. 1931 – 1945, Jul. 2021.
  33. T. Zhou, K. Xu, Z. Shen, W. Xie, D. Zhang, and J. Xu, “AoA-based positioning for aerial intelligent reflecting surface-aided wireless communications: An angle-domain approach,” IEEE Commun. Lett., vol. 11, no. 4, pp. 761–765, Apr. 2022.
  34. W. Huleihel, J. Tabrikian, and R. Shavit, “Optimal adaptive waveform design for cognitive MIMO radar,” IEEE Trans. Signal Processing, vol. 61, no. 20, pp. 5075–5089, Jun. 2013.
  35. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Representations (ICLR), 2015. [Online]. Available: http://arxiv.org/abs/1412.6980
  36. L. Zuo, R. Niu, and P. K. Varshney, “Conditional posterior cramér–rao lower bounds for nonlinear sequential bayesian estimation,” IEEE Transactions on Signal Processing, vol. 59, no. 1, pp. 1–14, Sept. 2011.
  37. H. Guo, Y. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3064–3076, May 2020.
  38. M. Abadi et al., “Tensorflow: A system for large-scale machine learning,” in Proc. USENIX Conf. Operating Syst. Des. and Implementation (OSDI), 2016, p. 265–283.
  39. C. Prévost, E. Chaumette, K. Usevich, D. Brie, and P. Comon, “On cramér-rao lower bounds with random equality constraints,” in Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing (ICASSP), May 2020, pp. 5355–5359.
  40. Y. Noam and H. Messer, “Notes on the tightness of the hybrid cramÉr–rao lower bound,” IEEE Trans. Signal Processing, vol. 57, no. 6, pp. 2074–2084, Feb. 2009.
  41. A. L. Matveyev, A. B. Gershman, and J. F. Böhme, “On the direction estimation cramér-rao bounds in the presence of uncorrelated unknown noise,” Circuits Syst. Signal Process., vol. 18, no. 5, p. 479–487, Sept. 1999.
  42. Q. Wang, L. Liu, S. Zhang, and F. C. Lau, “Trilateration-based device-free sensing: Two base stations and one passive IRS are sufficient,” in Proc. IEEE Global Commun. (Globecom), Dec. 2022, pp. 5613–5618.
Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.