Electron-correlation induced nonclassicallity of light from high-harmonic generation
Abstract: We study the effect of electron-electron correlations on the quantum state of the light emitted from high-harmonic generation (HHG). The quantum state of the emitted light is obtained by using a fully quantum mechanical description of both the optical modes as well as the electronic system. This is different from the usual semiclassical description of HHG, which only treats the electronic target system quantum mechanically. Using the generic Fermi-Hubbard model, the strength of the electron-electron correlation can be treated as a parameter enabling us to investigate the two limiting cases of a completely uncorrelated phase and a correlated Mott-insulating phase. In the completely uncorrelated phase, the model reduces to a single-band tight-binding model in which only intraband currents contribute to the spectrum. In this limit, we analytically find that the emitted light is in a classical coherent state. In the Mott-insulating phase, a consideration of the photon statistics and squeezing of the emitted photonic state shows that the inter-Hubbard-subband current generates nonclassical light. In this sense, we show that electron-electron correlation can induce the generation of nonclassical states of light.
- F. Krausz and M. Ivanov, Attosecond physics, Rev. Mod. Phys. 81, 163 (2009).
- P. B. Corkum, Plasma perspective on strong field multiphoton ionization, Phys. Rev. Lett. 71, 1994 (1993).
- S. Ghimire and D. A. Reis, High-harmonic generation from solids, Nature Physics 15, 10 (2019).
- E. Goulielmakis and T. Brabec, High harmonic generation in condensed matter, Nature Photonics 16, 411 (2022).
- D. Golde, T. Meier, and S. W. Koch, High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations, Phys. Rev. B 77, 075330 (2008).
- G. Vampa and T. Brabec, Merge of high harmonic generation from gases and solids and its implications for attosecond science, J. Phys. B 50, 083001 (2017).
- A. V. Bogatskaya, E. A. Volkova, and A. M. Popov, Spontaneous emission of atoms in a strong laser field, Journal of Experimental and Theoretical Physics 125, 587 (2017).
- A. Gombkötő, P. Földi, and S. Varró, Quantum-optical description of photon statistics and cross correlations in high-order harmonic generation, Phys. Rev. A 104, 033703 (2021).
- D. N. Yangaliev, V. P. Krainov, and O. I. Tolstikhin, Quantum theory of radiation by nonstationary systems with application to high-order harmonic generation, Phys. Rev. A 101, 013410 (2020).
- P. Stammer, Theory of entanglement and measurement in high-order harmonic generation, Phys. Rev. A 106, L050402 (2022).
- A. Zavatta, S. Viciani, and M. Bellini, Quantum-to-classical transition with single-photon-added coherent states of light, Science 306, 660 (2004), https://www.science.org/doi/pdf/10.1126/science.1103190 .
- I. H. Deutsch, Harnessing the power of the second quantum revolution, PRX Quantum 1, 020101 (2020).
- M. Barbieri, Optical quantum metrology, PRX Quantum 3, 010202 (2022).
- Y. Murakami, M. Eckstein, and P. Werner, High-harmonic generation in Mott insulators, Phys. Rev. Lett. 121, 057405 (2018).
- Y. Murakami and P. Werner, Nonequilibrium steady states of electric field driven Mott insulators, Phys. Rev. B 98, 075102 (2018).
- T. Hansen, S. V. B. Jensen, and L. B. Madsen, Correlation effects in high-order harmonic generation from finite systems, Phys. Rev. A 105, 053118 (2022).
- T. Hansen and L. B. Madsen, Doping effects in high-harmonic generation from correlated systems, Phys. Rev. B 106, 235142 (2022).
- M. Lysne, Y. Murakami, and P. Werner, Signatures of bosonic excitations in high-harmonic spectra of Mott insulators, Phys. Rev. B 101, 195139 (2020).
- N. Tancogne-Dejean, M. A. Sentef, and A. Rubio, Ultrafast modification of hubbard U𝑈{{U}}italic_U in a strongly correlated material: Ab initio high-harmonic generation in NiO, Phys. Rev. Lett. 121, 097402 (2018).
- S. Imai, A. Ono, and S. Ishihara, High harmonic generation in a correlated electron system, Phys. Rev. Lett. 124, 157404 (2020).
- K. Chinzei and T. N. Ikeda, Disorder effects on the origin of high-order harmonic generation in solids, Phys. Rev. Research 2, 013033 (2020).
- C. Orthodoxou, A. Zaïr, and G. H. Booth, High harmonic generation in two-dimensional Mott insulators, npj Quantum Materials 6, 76 (2021).
- J. Masur, D. I. Bondar, and G. McCaul, Optical distinguishability of Mott insulators in the time versus frequency domain, Phys. Rev. A 106, 013110 (2022).
- P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78, 17 (2006).
- M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions, Rev. Mod. Phys. 70, 1039 (1998).
- C. Cohen-Tannoudji, G. Grynberg, and J. Dupont-Roc, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New York, 1998).
- N. Tomita and K. Nasu, Quantum fluctuation effects on light absorption spectra of the one-dimensional extended Hubbard model, Phys. Rev. B 63, 085107 (2001).
- T. J. Park and J. C. Light, Unitary quantum time evolution by iterative Lanczos reduction, J. Chem. Phys. 85, 5870 (1986).
- E. S. Smyth, J. S. Parker, and K. Taylor, Numerical integration of the time-dependent Schrödinger equation for laser-driven helium, Comput. Phys. Commun. 114, 1 (1998).
- J. C. Baggesen and L. B. Madsen, On the dipole, velocity and acceleration forms in high-order harmonic generation from a single atom or molecule, J. Phys. B 44, 115601 (2011).
- C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
- M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
- S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
- G. Breitenbach, S. Schiller, and J. Mlynek, Measurement of the quantum states of squeezed light, Nature 387, 471 (1997).
- R. Short and L. Mandel, Observation of sub-poissonian photon statistics, Phys. Rev. Lett. 51, 384 (1983).
- F. Gebhard, The Mott Metal-Insulator Transition: Models and Methods, Vol. 137 (Springer Berlin, Heidelberg, 1997).
- T. Oka, Nonlinear doublon production in a mott insulator: Landau-dykhne method applied to an integrable model, Phys. Rev. B 86, 075148 (2012).
- T. Hansen and L. B. Madsen, Effects of lattice imperfections on high-harmonic generation from correlated systems (2023), arXiv:2306.08379 [cond-mat.str-el] .
- I. A. Walmsley, Quantum optics: Science and technology in a new light, Science 348, 525 (2015), https://www.science.org/doi/pdf/10.1126/science.aab0097 .
- G. D. Mahan, Many-Particle Physics (Springer New York, New York, 2000).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.