Baryon electric charge correlation as a magnetometer of QCD (2312.08860v2)
Abstract: The correlation between net baryon number and electric charge, $\chi_{11}{\rm BQ}$, can serve as a magnetometer of QCD. This is demonstrated by lattice QCD computations using the highly improved staggered quarks with physical pion mass of $M_\pi=135~$MeV on $N_\tau=8$ and 12 lattices. We find that $\chi_{11}{\rm BQ}$ along the transition line starts to increase rapidly with magnetic field strength $eB\gtrsim 2M_\pi2$ and by a factor 2 at $eB\simeq 8M_\pi2$. Furthermore, the ratio of electric charge chemical potential to baryon chemical potential, $\mu_{\rm Q}/\mu_{\rm B}$, shows significant dependence on the magnetic field strength and varies from the ratio of electric charge to baryon number in the colliding nuclei in heavy ion collisions. These results can provide baselines for effective theory and model studies, and both $\chi_{11}{\rm BQ}$ and $\mu_{\rm Q}/\mu_{\rm B}$ could be useful probes for the detection of magnetic fields in relativistic heavy ion collision experiments as compared with corresponding results from the hadron resonance gas model.
- T. Vachaspati, Phys. Lett. B265, 258 (1991).
- K. Enqvist and P. Olesen, Physics Letters B 319, 178 (1993).
- W.-T. Deng and X.-G. Huang, Phys. Rev. C85, 044907 (2012), arXiv:1201.5108 [nucl-th] .
- D. E. Kharzeev and J. Liao, Nature Rev. Phys. 3, 55 (2021), arXiv:2102.06623 [hep-ph] .
- M. Abdallah et al. (STAR), Phys. Rev. C 105, 014901 (2022), arXiv:2109.00131 [nucl-ex] .
- B. Aboona et al. (STAR), Phys. Lett. B 839, 137779 (2023), arXiv:2209.03467 [nucl-ex] .
- J. Adam et al. (STAR), Phys. Rev. Lett. 123, 162301 (2019a), arXiv:1905.02052 [nucl-ex] .
- S. Acharya et al. (ALICE), Phys. Rev. Lett. 125, 022301 (2020), arXiv:1910.14406 [nucl-ex] .
- J. Adam et al. (STAR), Phys. Rev. Lett. 121, 132301 (2018), arXiv:1806.02295 [hep-ex] .
- M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 212301 (2018), arXiv:1806.08708 [nucl-ex] .
- W.-j. Fu, (2022), arXiv:2205.00468 [hep-ph] .
- X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017), arXiv:1701.02105 [nucl-ex] .
- A. Rustamov, EPJ Web Conf. 276, 01007 (2023), arXiv:2210.14810 [hep-ph] .
- T. Nonaka, Acta Phys. Polon. Supp. 16, 1 (2023).
- H. S. Ko (STAR), Acta Phys. Polon. Supp. 16, 1 (2023).
- K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 117, 102301 (2016), arXiv:1605.01912 [hep-ph] .
- W.-j. Fu, Phys. Rev. D 88, 014009 (2013), arXiv:1306.5804 [hep-ph] .
- G. Endrödi, JHEP 04, 023 (2013), arXiv:1301.1307 [hep-ph] .
- A. Bazavov et al. (HotQCD), Phys. Rev. D 86, 034509 (2012a), arXiv:1203.0784 [hep-lat] .
- A. Bazavov et al. (HotQCD), Phys. Rev. D 90, 094503 (2014a), arXiv:1407.6387 [hep-lat] .
- A. Bazavov et al. (HotQCD), Phys. Lett. B795, 15 (2019a), arXiv:1812.08235 [hep-lat] .
- H. T. Ding et al. (HotQCD), Phys. Rev. Lett. 123, 062002 (2019), arXiv:1903.04801 [hep-lat] .
- L. Mazur et al. (HotQCD), (2023), arXiv:2306.01098 [hep-lat] .
- The transition temperature is roughly independent of eB𝑒𝐵eBitalic_e italic_B within the current eB𝑒𝐵eBitalic_e italic_B window. This is determined by the chiral susceptibility, as detailed in the Supplemental Materials.
- J. Adam et al. (STAR), Phys. Rev. C 100, 014902 (2019b), [Erratum: Phys.Rev.C 105, 029901 (2022)], arXiv:1903.05370 [nucl-ex] .
- L. Adamczyk et al. (STAR), Phys. Rev. C 96, 044904 (2017), arXiv:1701.07065 [nucl-ex] .
- S. Wheaton and J. Cleymans, Comput. Phys. Commun. 180, 84 (2009), arXiv:hep-ph/0407174 .
- P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.