Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Baryon electric charge correlation as a magnetometer of QCD (2312.08860v2)

Published 14 Dec 2023 in hep-lat, hep-ph, nucl-ex, and nucl-th

Abstract: The correlation between net baryon number and electric charge, $\chi_{11}{\rm BQ}$, can serve as a magnetometer of QCD. This is demonstrated by lattice QCD computations using the highly improved staggered quarks with physical pion mass of $M_\pi=135~$MeV on $N_\tau=8$ and 12 lattices. We find that $\chi_{11}{\rm BQ}$ along the transition line starts to increase rapidly with magnetic field strength $eB\gtrsim 2M_\pi2$ and by a factor 2 at $eB\simeq 8M_\pi2$. Furthermore, the ratio of electric charge chemical potential to baryon chemical potential, $\mu_{\rm Q}/\mu_{\rm B}$, shows significant dependence on the magnetic field strength and varies from the ratio of electric charge to baryon number in the colliding nuclei in heavy ion collisions. These results can provide baselines for effective theory and model studies, and both $\chi_{11}{\rm BQ}$ and $\mu_{\rm Q}/\mu_{\rm B}$ could be useful probes for the detection of magnetic fields in relativistic heavy ion collision experiments as compared with corresponding results from the hadron resonance gas model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. T. Vachaspati, Phys. Lett. B265, 258 (1991).
  2. K. Enqvist and P. Olesen, Physics Letters B 319, 178 (1993).
  3. W.-T. Deng and X.-G. Huang, Phys. Rev. C85, 044907 (2012), arXiv:1201.5108 [nucl-th] .
  4. D. E. Kharzeev and J. Liao, Nature Rev. Phys. 3, 55 (2021), arXiv:2102.06623 [hep-ph] .
  5. M. Abdallah et al. (STAR), Phys. Rev. C 105, 014901 (2022), arXiv:2109.00131 [nucl-ex] .
  6. B. Aboona et al. (STAR), Phys. Lett. B 839, 137779 (2023), arXiv:2209.03467 [nucl-ex] .
  7. J. Adam et al. (STAR), Phys. Rev. Lett. 123, 162301 (2019a), arXiv:1905.02052 [nucl-ex] .
  8. S. Acharya et al. (ALICE), Phys. Rev. Lett. 125, 022301 (2020), arXiv:1910.14406 [nucl-ex] .
  9. J. Adam et al. (STAR), Phys. Rev. Lett. 121, 132301 (2018), arXiv:1806.02295 [hep-ex] .
  10. M. Aaboud et al. (ATLAS), Phys. Rev. Lett. 121, 212301 (2018), arXiv:1806.08708 [nucl-ex] .
  11. W.-j. Fu,   (2022), arXiv:2205.00468 [hep-ph] .
  12. X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112 (2017), arXiv:1701.02105 [nucl-ex] .
  13. A. Rustamov, EPJ Web Conf. 276, 01007 (2023), arXiv:2210.14810 [hep-ph] .
  14. T. Nonaka, Acta Phys. Polon. Supp. 16, 1 (2023).
  15. H. S. Ko (STAR), Acta Phys. Polon. Supp. 16, 1 (2023).
  16. K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 117, 102301 (2016), arXiv:1605.01912 [hep-ph] .
  17. W.-j. Fu, Phys. Rev. D 88, 014009 (2013), arXiv:1306.5804 [hep-ph] .
  18. G. Endrödi, JHEP 04, 023 (2013), arXiv:1301.1307 [hep-ph] .
  19. A. Bazavov et al. (HotQCD), Phys. Rev. D 86, 034509 (2012a), arXiv:1203.0784 [hep-lat] .
  20. A. Bazavov et al. (HotQCD), Phys. Rev. D 90, 094503 (2014a), arXiv:1407.6387 [hep-lat] .
  21. A. Bazavov et al. (HotQCD), Phys. Lett. B795, 15 (2019a), arXiv:1812.08235 [hep-lat] .
  22. H. T. Ding et al. (HotQCD), Phys. Rev. Lett. 123, 062002 (2019), arXiv:1903.04801 [hep-lat] .
  23. L. Mazur et al. (HotQCD),   (2023), arXiv:2306.01098 [hep-lat] .
  24. The transition temperature is roughly independent of e⁢B𝑒𝐵eBitalic_e italic_B within the current e⁢B𝑒𝐵eBitalic_e italic_B window. This is determined by the chiral susceptibility, as detailed in the Supplemental Materials.
  25. J. Adam et al. (STAR), Phys. Rev. C 100, 014902 (2019b), [Erratum: Phys.Rev.C 105, 029901 (2022)], arXiv:1903.05370 [nucl-ex] .
  26. L. Adamczyk et al. (STAR), Phys. Rev. C 96, 044904 (2017), arXiv:1701.07065 [nucl-ex] .
  27. S. Wheaton and J. Cleymans, Comput. Phys. Commun. 180, 84 (2009), arXiv:hep-ph/0407174 .
  28. P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube