Catch and release of propagating bosonic field with non-Markovian giant atom (2312.08832v1)
Abstract: The non-Markovianity of physical systems is considered to be a valuable resource that has potential applications to quantum information processing. The control of traveling quantum fields encoded with information (flying qubit) is crucial for quantum networks. In this work, we propose to catch and release the propagating photon/phonon with a non-Markovian giant atom, which is coupled to the environment via multiple coupling points. Based on the Heisenberg equation of motion for the giant atom and field operators, we calculate the time-dependent scattering coefficients from the linear response theory and define the criteria for the non-Markovian giant atom. We analyze and numerically verify that the field bound states due to non-Markovianity can be harnessed to catch and release the propagating bosonic field on demand by tuning the parameters of giant atom.
- Walls D F and Milburn G J 2008 Quantum Optics 2nd ed (Springer) ISBN 978-3-540-28573-1 URL http://link.springer.com/10.1007/978-3-540-28574-8
- Kockum A F, Delsing P and Johansson G 2014 Physical Review A 90 013837 ISSN 1050-2947 (Preprint 1406.0350) URL http://link.aps.org/doi/10.1103/PhysRevA.90.013837
- Kockum A F, Johansson G and Nori F 2018 Physical Review Letters 120 140404 ISSN 0031-9007 (Preprint 1711.08863) URL https://link.aps.org/doi/10.1103/PhysRevLett.120.140404
- Carollo A, Cilluffo D and Ciccarello F 2020 Phys. Rev. Res. 2(4) 043184 URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.043184
- Kockum A F 2019 (Preprint 1912.13012) URL http://arxiv.org/abs/1912.13012
- González-Tudela A, Sánchez Muñoz C and Cirac J I 2019 Physical Review Letters 122 203603 ISSN 0031-9007 (Preprint 1901.00289) URL https://link.aps.org/doi/10.1103/PhysRevLett.122.203603
- Zhao W and Wang Z 2020 Phys. Rev. A 101(5) 053855 URL https://link.aps.org/doi/10.1103/PhysRevA.101.053855
- Lim K H, Mok W K and Kwek L C 2023 Phys. Rev. A 107(2) 023716 URL https://link.aps.org/doi/10.1103/PhysRevA.107.023716
- Jia W Z and Yu M T 2023 Atom-photon dressed states in a waveguide-qed system with multiple giant atoms coupled to a resonator-array waveguide (Preprint 2304.02072)
- Bag R and Roy D 2023 Quantum light-matter interactions in structured waveguides (Preprint 2304.13306)
- Cheng W, Wang Z and Liu Y x 2022 Phys. Rev. A 106(3) 033522 URL https://link.aps.org/doi/10.1103/PhysRevA.106.033522
- Vega C, Porras D and González-Tudela A 2023 Phys. Rev. Res. 5(2) 023031 URL https://link.aps.org/doi/10.1103/PhysRevResearch.5.023031
- Joshi C, Yang F and Mirhosseini M 2023 Phys. Rev. X 13(2) 021039 URL https://link.aps.org/doi/10.1103/PhysRevX.13.021039
- Wang X and Li H R 2022 Quantum Science and Technology 7 035007 URL https://dx.doi.org/10.1088/2058-9565/ac6a04
- Yin X L and Liao J Q 2023 Phys. Rev. A 108(2) 023728 URL https://link.aps.org/doi/10.1103/PhysRevA.108.023728
- Yin X L, Luo W B and Liao J Q 2022 Phys. Rev. A 106(6) 063703 URL https://link.aps.org/doi/10.1103/PhysRevA.106.063703
- Santos A C and Bachelard R 2023 Phys. Rev. Lett. 130(5) 053601 URL https://link.aps.org/doi/10.1103/PhysRevLett.130.053601
- Noachtar D D, Knörzer J and Jonsson R H 2022 Phys. Rev. A 106(1) 013702 URL https://link.aps.org/doi/10.1103/PhysRevA.106.013702
- Cheng W, Wang Z and Tian T 2023 Laser Physics 33 085203 URL https://dx.doi.org/10.1088/1555-6611/acde6e
- Pichler H and Zoller P 2016 Phys. Rev. Lett. 116(9) 093601 URL https://link.aps.org/doi/10.1103/PhysRevLett.116.093601
- Wang C, Ma X S and Cheng M T 2021 Opt. Express 29 40116–40124 URL https://opg.optica.org/oe/abstract.cfm?URI=oe-29-24-40116
- Du L, Guo L and Li Y 2023 Phys. Rev. A 107(2) 023705 URL https://link.aps.org/doi/10.1103/PhysRevA.107.023705
- Ask A and Johansson G 2022 Phys. Rev. Lett. 128(8) 083603 URL https://link.aps.org/doi/10.1103/PhysRevLett.128.083603
- DiVincenzo D P 1995 Science 270 255–261 (Preprint https://www.science.org/doi/pdf/10.1126/science.270.5234.255) URL https://www.science.org/doi/abs/10.1126/science.270.5234.255
- Rayleigh L 1885 Proceedings of the London Mathematical Society s1-17 4–11 (Preprint https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s1-17.1.4) URL https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-17.1.4
- Datta S 1986 Surface acoustic wave devices URL https://api.semanticscholar.org/CorpusID:137107497
- White R M and Voltmer F W 2004 Applied Physics Letters 7 314–316 ISSN 0003-6951 (Preprint https://pubs.aip.org/aip/apl/article-pdf/7/12/314/7521252/314_1_online.pdf) URL https://doi.org/10.1063/1.1754276
- Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge University Press) ISBN 9780521435956 URL https://www.cambridge.org/core/product/identifier/9780511813993/type/book
- Cai Q Y and Jia W Z 2021 Phys. Rev. A 104(3) 033710 URL https://link.aps.org/doi/10.1103/PhysRevA.104.033710
- Bilz H 1982 Berichte der Bunsengesellschaft für physikalische Chemie 86 573–573 (Preprint https://onlinelibrary.wiley.com/doi/pdf/10.1002/bbpc.19820860623) URL https://onlinelibrary.wiley.com/doi/abs/10.1002/bbpc.19820860623
- Kubo R 1957 Journal of the Physical Society of Japan 12 570–586 (Preprint https://doi.org/10.1143/JPSJ.12.570) URL https://doi.org/10.1143/JPSJ.12.570
- Du L, Chen Y T and Li Y 2021 Phys. Rev. Res. 3(4) 043226 URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.043226
- Li W L, Zhang G and Wu R B 2022 Automatica 143 110338 ISSN 0005-1098 URL https://www.sciencedirect.com/science/article/pii/S000510982200187X
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.