Papers
Topics
Authors
Recent
2000 character limit reached

Symmetries, Spin-2 Scattering Amplitudes, and Equivalence theorems in Warped Five-Dimensional Gravitational Theories (2312.08576v1)

Published 14 Dec 2023 in hep-ph, gr-qc, and hep-th

Abstract: Building on work by Hang and He, we show how the residual five-dimensional diffeomorphism symmetries of compactified gravitational theories with a warped extra dimension imply Equivalence theorems which ensure that the scattering amplitudes of helicity-0 and helicity-1 spin-2 Kaluza-Klein states equal (to leading order in scattering energy) those of the corresponding Goldstone bosons present in the t-Hooft-Feynman gauge. We derive a set of Ward identities that lead to a transparent power-counting of the scattering amplitudes involving spin-2 Kaluza-Klein states. We explicitly calculate these amplitudes in terms of the Goldstone bosons in the Randall-Sundrum model, check the correspondence to previous unitary-gauge computations, and demonstrate the efficacy oft-Hooft-Feynman gauge for accurately computing amplitudes for scattering of the spin-2 states both among themselves and with matter. Power-counting for the Goldstone boson interactions establishes that the scattering amplitudes grow no faster than $O(s)$, explaining the origin of the behavior previously shown to arise from intricate cancellations between different contributions to these scattering amplitudes in unitary gauge. We describe how our results apply to more general warped geometries, including models with a stabilized extra dimension. In an appendix we explicitly identify the symmetry algebra of the residual 5D diffeomorphisms of a Randall-Sundrum extra-dimensional theory.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. M. Fierz and W. Pauli, Proc. Roy. Soc. Lond. A 173, 211 (1939).
  2. K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2011), arXiv:1105.3735 [hep-th] .
  3. C. de Rham, Living Rev. Rel. 17, 7 (2014), arXiv:1401.4173 [hep-th] .
  4. H. van Dam and M. J. G. Veltman, Nucl. Phys. B 22, 397 (1970).
  5. V. I. Zakharov, JETP Lett. 12, 312 (1970).
  6. T. Kaluza, Int. J. Mod. Phys. D 27, 1870001 (2018), arXiv:1803.08616 [physics.hist-ph] .
  7. O. Klein, Z. Phys. 37, 895 (1926).
  8. Y.-F. Hang and H.-J. He, Phys. Rev. D 105, 084005 (2022a).
  9. Y.-F. Hang and H.-J. He, Research 2022, 9860945 (2022b), arXiv:2207.11214 [hep-th] .
  10. J. Bonifacio and K. Hinterbichler, JHEP 12, 165 (2019), arXiv:1910.04767 [hep-th] .
  11. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999a), arXiv:hep-ph/9905221 .
  12. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999b), arXiv:hep-th/9906064 .
  13. W. D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83, 4922 (1999), arXiv:hep-ph/9907447 .
  14. W. D. Goldberger and M. B. Wise, Phys. Lett. B 475, 275 (2000), arXiv:hep-ph/9911457 .
  15. A. de Giorgi and S. Vogl, JHEP 11, 036 (2021), arXiv:2105.06794 [hep-ph] .
  16. L. Dolan and M. J. Duff, Phys. Rev. Lett. 52, 14 (1984).
  17. C. E. Vayonakis, Lett. Nuovo Cim. 17, 383 (1976).
  18. M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. B 261, 379 (1985).
  19. H.-J. He, Int. J. Mod. Phys. A 20, 3362 (2005), arXiv:hep-ph/0412113 .
  20. A. Wulzer, Nucl. Phys. B 885, 97 (2014), arXiv:1309.6055 [hep-ph] .

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.