Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The covariant functoriality of graph algebras (2312.08562v3)

Published 13 Dec 2023 in math.RA

Abstract: In the standard category of directed graphs, graph morphisms map edges to edges. By allowing graph morphisms to map edges to finite paths (path homomorphisms of graphs), we obtain an ambient category in which we determine subcategories enjoying covariant functors to categories of algebras given by constructions of path algebras, Cohn path algebras, and Leavitt path algebras, respectively. Thus we obtain new tools to unravel homomorphisms between Leavitt path algebras and graph C*-algebras. In particular, a graph-algebraic presentation of the inclusion of the C*-algebra of a quantum real projective plane into the Toeplitz algebra allows us to determine a quantum CW-complex structure of the former. It comes as a mixed-pullback theorem where two $*$-homomorphisms are covariantly induced from path homomorphisms of graphs and the remaining two are contravariantly induced by admissible inclusions of graphs. As a main result and an application of new covariant-induction tools, we prove such a mixed-pullback theorem for arbitrary graphs whose all vertex-simple loops have exits, which substantially enlarges the scope of examples coming from noncommutative topology.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.