Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Crystalline finite-size topology (2312.08552v1)

Published 13 Dec 2023 in cond-mat.str-el, cond-mat.mes-hall, and cond-mat.supr-con

Abstract: Topological phases stabilized by crystalline point group symmetry protection are a large class of symmetry-protected topological phases subjected to considerable experimental scrutiny. Here, we show that the canonical three-dimensional (3D) crystalline topological insulator protected by time-reversal symmetry $\mathcal{T}$ and four-fold rotation symmetry $\mathcal{C}_4$ individually or the product symmetry $\mathcal{C}_4 \mathcal{T}$, generically realizes finite-size crystalline topological phases in thin film geometry (a quasi-(3-1)-dimensional, or q(3-1)D, geometry): response signatures of the 3D bulk topology co-exist with topologically-protected, quasi-(3-2)D and quasi-(3-3)D boundary modes within the energy gap resulting from strong hybridisation of the Dirac cone surface states of the underlying 3D crystalline topological phase. Importantly, we find qualitative distinctions between these gapless boundary modes and those of strictly 2D crystalline topological states with the same symmetry-protection, and develop a low-energy, analytical theory of the finite-size topological magnetoelectric response.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Liang Fu, “Topological crystalline insulators,” Phys. Rev. Lett. 106, 106802 (2011).
  2. Wladimir A. Benalcazar, B. Andrei Bernevig,  and Taylor L. Hughes, “Quantized electric multipole insulators,” Science 357, 61–66 (2017).
  3. Y. Tanaka, Zhi Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, Kouji Segawa,  and Yoichi Ando, “Experimental realization of a topological crystalline insulator in snte,” Nat. Phys. 8, 800–803 (2012).
  4. Yoichi Ando and Liang Fu, “Topological crystalline insulators and topological superconductors: From concepts to materials,” Annual Review of Condensed Matter Physics 6, 361–381 (2015), https://doi.org/10.1146/annurev-conmatphys-031214-014501 .
  5. Benjamin J. Wieder, Barry Bradlyn, Zhijun Wang, Jennifer Cano, Youngkuk Kim, Hyeong-Seok D. Kim, Andrew M. Rappe, C. L. Kane,  and B. Andrei Bernevig, “Wallpaper fermions and the nonsymmorphic dirac insulator,” Science 361, 246–251 (2018), https://science.sciencemag.org/content/361/6399/246.full.pdf .
  6. Ari M. Turner, Yi Zhang, Roger S. K. Mong,  and Ashvin Vishwanath, “Quantized response and topology of magnetic insulators with inversion symmetry,” Phys. Rev. B 85, 165120 (2012).
  7. Taylor L. Hughes, Emil Prodan,  and B. Andrei Bernevig, “Inversion-symmetric topological insulators,” Phys. Rev. B 83, 245132 (2011).
  8. Chen Fang, Matthew J. Gilbert,  and B. Andrei Bernevig, “Bulk topological invariants in noninteracting point group symmetric insulators,” Phys. Rev. B 86, 115112 (2012).
  9. Ari M. Turner, Yi Zhang,  and Ashvin Vishwanath, “Entanglement and inversion symmetry in topological insulators,” Phys. Rev. B 82, 241102 (2010).
  10. Ken Shiozaki, Masatoshi Sato,  and Kiyonori Gomi, “Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topology in nonsymmorphic crystalline insulators: Möbius twist in surface states,” Phys. Rev. B 91, 155120 (2015).
  11. Ken Shiozaki, Masatoshi Sato,  and Kiyonori Gomi, “Topology of nonsymmorphic crystalline insulators and superconductors,” Phys. Rev. B 93, 195413 (2016).
  12. Ken Shiozaki, Masatoshi Sato,  and Kiyonori Gomi, “Topological crystalline materials: General formulation, module structure, and wallpaper groups,” Phys. Rev. B 95, 235425 (2017).
  13. Mois I. Aroyo, Asen Kirov, Cesar Capillas, J. M. Perez-Mato,  and Hans Wondratschek, “Bilbao Crystallographic Server. II. Representations of crystallographic point groups and space groups,” Acta Crystallographica Section A 62, 115–128 (2006).
  14. Robert-Jan Slager, Andrej Mesaros, Vladimir Juričić,  and Jan Zaanen, “The space group classification of topological band-insulators,” Nature Physics 9, 98–102 (2013).
  15. Jorrit Kruthoff, Jan de Boer, Jasper van Wezel, Charles L. Kane,  and Robert-Jan Slager, “Topological classification of crystalline insulators through band structure combinatorics,” Phys. Rev. X 7, 041069 (2017).
  16. A. Alexandradinata and B. Andrei Bernevig, “Berry-phase description of topological crystalline insulators,” Phys. Rev. B 93, 205104 (2016).
  17. Haruki Watanabe, Hoi Chun Po, Michael P. Zaletel,  and Ashvin Vishwanath, “Filling-enforced gaplessness in band structures of the 230 space groups,” Phys. Rev. Lett. 117, 096404 (2016).
  18. Barry Bradlyn, L. Elcoro, Jennifer Cano, M. G. Vergniory, Zhijun Wang, C. Felser, M. I. Aroyo,  and B. Andrei Bernevig, “Topological quantum chemistry,” Nature 547, 298–305 (2017).
  19. Dániel Varjas, Fernando de Juan,  and Yuan-Ming Lu, “Space group constraints on weak indices in topological insulators,” Phys. Rev. B 96, 035115 (2017).
  20. Shinsei Ryu, Andreas P Schnyder, Akira Furusaki,  and Andreas W W Ludwig, “Topological insulators and superconductors: tenfold way and dimensional hierarchy,” New Journal of Physics 12, 065010 (2010).
  21. Andreas P. Schnyder, Shinsei Ryu, Akira Furusaki,  and Andreas W. W. Ludwig, “Classification of topological insulators and superconductors in three spatial dimensions,” Phys. Rev. B 78, 195125 (2008).
  22. F. D. M. Haldane, “Model for a quantum hall effect without landau levels: Condensed-matter realization of the ”parity anomaly”,” Phys. Rev. Lett. 61, 2015–2018 (1988).
  23. J. E. Moore and L. Balents, “Topological invariants of time-reversal-invariant band structures,” Phys. Rev. B 75, 121306(R) (2007).
  24. Ashley M. Cook and Anne E. B. Nielsen, “Finite-size topology,” Phys. Rev. B 108, 045144 (2023).
  25. R. Flores-Calderon, Roderich Moessner,  and Ashley M. Cook, “Time-reversal invariant finite-size topology,” Phys. Rev. B 108, 125410 (2023).
  26. A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature 499, 419–425 (2013).
  27. Chaowei Hu, Kyle N. Gordon, Pengfei Liu, Jinyu Liu, Xiaoqing Zhou, Peipei Hao, Dushyant Narayan, Eve Emmanouilidou, Hongyi Sun, Yuntian Liu, Harlan Brawer, Arthur P. Ramirez, Lei Ding, Huibo Cao, Qihang Liu, Dan Dessau,  and Ni Ni, “A van der waals antiferromagnetic topological insulator with weak interlayer magnetic coupling,” Nature Communications 11, 97 (2020).
  28. Liangzhi Kou, Shu-Chun Wu, Claudia Felser, Thomas Frauenheim, Changfeng Chen,  and Binghai Yan, “Robust 2d topological insulators in van der waals heterostructures,” ACS Nano 8, 10448–10454 (2014), pMID: 25226453, https://doi.org/10.1021/nn503789v .
  29. Sajid Husain, Rahul Gupta, Ankit Kumar, Prabhat Kumar, Nilamani Behera, Rimantas Brucas, Sujeet Chaudhary,  and Peter Svedlindh, “Emergence of spin–orbit torques in 2d transition metal dichalcogenides: A status update,” Applied Physics Reviews 7, 041312 (2020), https://doi.org/10.1063/5.0025318 .
  30. Daniele Varsano, Maurizia Palummo, Elisa Molinari,  and Massimo Rontani, “A monolayer transition-metal dichalcogenide as a topological excitonic insulator,” Nature Nanotechnology 15, 367–372 (2020).
  31. Peng Song, Chuanghan Hsu, Meng Zhao, Xiaoxu Zhao, Tay-Rong Chang, Jinghua Teng, Hsin Lin,  and Kian Ping Loh, “Few-layer 1t’ MoTe2subscriptMoTe2\text{MoTe}_{2}MoTe start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT as gapless semimetal with thickness dependent carrier transport,” 2D Materials 5, 031010 (2018).
  32. Xiaofeng Qian, Junwei Liu, Liang Fu,  and Ju Li, “Quantum spin hall effect in two-dimensional transition metal dichalcogenides,” Science 346, 1344–1347 (2014), https://www.science.org/doi/pdf/10.1126/science.1256815 .
  33. Minoru Kawamura, Masataka Mogi, Ryutaro Yoshimi, Takahiro Morimoto, Kei S. Takahashi, Atsushi Tsukazaki, Naoto Nagaosa, Masashi Kawasaki,  and Yoshinori Tokura, “Laughlin charge pumping in a quantum anomalous Hall insulator,” Nature Physics 19, 333–337 (2023).
  34. See Supplemental Material [URL] for derivation of the low-energy effective Hamiltonian and details of topological invariants.
  35. Andrew M. Essin, Joel E. Moore,  and David Vanderbilt, “Magnetoelectric polarizability and axion electrodynamics in crystalline insulators,” Phys. Rev. Lett. 102, 146805 (2009).
  36. Chang Liu, Yongchao Wang, Hao Li, Yang Wu, Yaoxin Li, Jiaheng Li, Ke He, Yong Xu, Jinsong Zhang,  and Yayu Wang, “Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator,” Nature Materials 19, 522–527 (2020).
  37. Yaoxin Li, Chang Liu, Yongchao Wang, Zichen Lian, Shuai Li, Hao Li, Yang Wu, Hai-Zhou Lu, Jinsong Zhang,  and Yayu Wang, “Giant nonlocal edge conduction in the axion insulator state of mnbi2te4,” Science Bulletin 68, 1252–1258 (2023).
  38. Chang Liu, Yongchao Wang, Ming Yang, Jiahao Mao, Hao Li, Yaoxin Li, Jiaheng Li, Haipeng Zhu, Junfeng Wang, Liang Li, Yang Wu, Yong Xu, Jinsong Zhang,  and Yayu Wang, “Magnetic-field-induced robust zero Hall plateau state in MnBi2Te4 Chern insulator,” Nature Communications 12, 4647 (2021).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube