Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Leveraging commuting groups for an efficient variational Hamiltonian ansatz (2312.08502v1)

Published 13 Dec 2023 in quant-ph and physics.chem-ph

Abstract: Efficiently calculating the low-lying eigenvalues of Hamiltonians, written as sums of Pauli operators, is a fundamental challenge in quantum computing. While various methods have been proposed to reduce the complexity of quantum circuits for this task, there remains room for further improvement. In this article, we introduce a new circuit design using commuting groups within the Hamiltonian to further reduce the circuit complexity of Hamiltonian-based quantum circuits. Our approach involves partitioning the Pauli operators into mutually commuting clusters and finding Clifford unitaries that diagonalize each cluster. We then design an ansatz that uses these Clifford unitaries for efficient switching between the clusters, complemented by a layer of parameterized single qubit rotations for each individual cluster. By conducting numerical simulations, we demonstrate the effectiveness of our method in accurately determining the ground state energy of different quantum chemistry Hamiltonians. Our results highlight the applicability and potential of our approach for designing problem-inspired ansatz for various quantum computing applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. R. P. Feynman, Int. J. Theor. Phys 21 (1982).
  2. J. Preskill, Quantum 2, 79 (2018).
  3. E. Farhi, J. Goldstone, and S. Gutmann, arXiv preprint arXiv:1411.4028  (2014).
  4. S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Advanced Quantum Technologies 2, 1900070 (2019).
  5. I. Cong, S. Choi, and M. D. Lukin, Nature Physics 15, 1273 (2019).
  6. C. O. Marrero, M. Kieferová, and N. Wiebe, PRX Quantum 2, 040316 (2021).
  7. T. Haug and M. Kim, arXiv preprint arXiv:2104.14543  (2021).
  8. D. Wecker, M. B. Hastings, and M. Troyer, Physical Review A 92, 042303 (2015).
  9. S. Aaronson and D. Gottesman, Physical Review A 70, 052328 (2004).
  10. S. Bravyi and D. Gosset, Physical review letters 116, 250501 (2016).
  11. V. Verteletskyi, T.-C. Yen, and A. F. Izmaylov, The Journal of chemical physics 152 (2020).
  12. A. Jena, S. Genin, and M. Mosca, arXiv preprint arXiv:1907.07859  (2019).
  13. A. Anand, J. S. Kottmann, and A. Aspuru-Guzik, arXiv preprint arXiv:2207.02961  (2022c).
  14. E. Van Den Berg and K. Temme, Quantum 4, 322 (2020).
  15. P. Jordan and E. P. Wigner, Z. Phys. 47, 14 (1928).
  16. https://github.com/AbhinavUofT/Modified_VHA.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube