Concatenating quantum error-correcting codes with decoherence-free subspaces and vice versa (2312.08322v2)
Abstract: Quantum error-correcting codes (QECCs) and decoherence-free subspace (DFS) codes provide active and passive means, respectively, to address certain types of errors that arise during quantum computation. The latter technique is suitable to correct correlated errors with certain symmetries and the former to correct independent errors. The concatenation of a QECC and a DFS code results in a degenerate code that splits into actively and passively correcting parts, with the degeneracy impacting either part, leading to degenerate errors as well as degenerate stabilizer operators. The concatenation of the two types of code can aid universal fault-tolerant quantum computation when a mix of correlated and independent errors is encountered. In particular, we show that for sufficiently strongly correlated errors, the concatenation with the DFS as the inner code provides better entanglement fidelity, whereas for sufficiently independent errors, the concatenation with the QECC as the inner code is preferable. As illustrative examples, we examine in detail the concatenation of a two-qubit DFS code and a three-qubit repetition code or five-qubit Knill-Laflamme code, under independent and correlated errors.
- S. Banerjee, Open Quantum Systems: Dynamics of Nonclassical Evolution, Texts and Readings in Physical Sciences (Springer Nature Singapore, 2018).
- P. W. Shor, Phys. Rev. A 52, R2493 (1995).
- A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
- A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).
- E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
- P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).
- Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).
- D. Gottesman, “An introduction to quantum error correction and fault-tolerant quantum computation,” (2009), arXiv:0904.2557 [quant-ph] .
- D. Poulin, Phys. Rev. A 74, 052333 (2006).
- J. G. D. Forney, MIT Press,Cambridge, MA (1966).
- F. Gaitan, Quantum Error Correction and Fault Tolerant Quantum Computing (Taylor & Francis, 2008).
- D. Aharonov and M. Ben-Or, “Fault-tolerant quantum computation with constant error rate,” (1999), arXiv:quant-ph/9906129 [quant-ph] .
- A. Y. Kitaev, Russian Mathematical Surveys 52, 1191 (1997).
- E. Knill and R. Laflamme, “Concatenated quantum codes,” (1996), arXiv:quant-ph/9608012 [quant-ph] .
- J. Fern, Phys. Rev. A 77, 010301 (2008).
- K. Khodjasteh and D. A. Lidar, Phys. Rev. A 68, 022322 (2003).
- G. A. Paz-Silva and D. A. Lidar, Scientific Reports 3 (2013), 10.1038/srep01530.
- J. R. West and B. H. Fong, New Journal of Physics 14, 083002 (2012).
- T. Jochym-O’Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014).
- C. Cafaro and S. Mancini, International Journal of Quantum Information 09, 309 (2011).
- Y. Ouyang, npj Quantum Information 7 (2021), 10.1038/s41534-021-00429-8.
- K. Khodjasteh and D. A. Lidar, Phys. Rev. Lett. 89, 197904 (2002).
- A. Pathak, Elements of Quantum Computation and Quantum Communication (CRC Press, 2013).
- J. Cornwell, Group Theory in Physics: An Introduction, Techniques of Physics Series (Academic Press, 1997).
- D. A. Lidar and T. A. Brun, Quantum Error Correction (Cambridge University Press, 2013).
- B. Schumacher, Phys. Rev. A 54, 2614 (1996).
- M. A. Nielsen, ‘‘The entanglement fidelity and quantum error correction,” (1996), arXiv:quant-ph/9606012 [quant-ph] .
- C. Cafaro and S. Mancini, Phys. Rev. A 82, 012306 (2010).
- A. Ekert and C. Macchiavello, Phys. Rev. Lett. 77, 2585 (1996).
- D. Gottesman, “Stabilizer codes and quantum error correction,” (1997), arXiv:quant-ph/9705052 [quant-ph] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.