Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

3DReact: Geometric deep learning for chemical reactions (2312.08307v2)

Published 13 Dec 2023 in physics.chem-ph and cs.LG

Abstract: Geometric deep learning models, which incorporate the relevant molecular symmetries within the neural network architecture, have considerably improved the accuracy and data efficiency of predictions of molecular properties. Building on this success, we introduce 3DReact, a geometric deep learning model to predict reaction properties from three-dimensional structures of reactants and products. We demonstrate that the invariant version of the model is sufficient for existing reaction datasets. We illustrate its competitive performance on the prediction of activation barriers on the GDB7-22-TS, Cyclo-23-TS and Proparg-21-TS datasets in different atom-mapping regimes. We show that, compared to existing models for reaction property prediction, 3DReact offers a flexible framework that exploits atom-mapping information, if available, as well as geometries of reactants and products (in an invariant or equivariant fashion). Accordingly, it performs systematically well across different datasets, atom-mapping regimes, as well as both interpolation and extrapolation tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Huo, H.; Rupp, M. Unified representation for machine learning of molecules and crystals. arXiv preprint 2017, arXiv:1704.06439
  2. Briling, K. R.; Calvino Alonso, Y.; Fabrizio, A.; Corminboeuf, C. SPAHH{}^{\mathrm{H}}start_FLOATSUPERSCRIPT roman_H end_FLOATSUPERSCRIPTM(a,b): encoding the density information from guess Hamiltonian in quantum machine learning representations. arXiv preprint 2023, arXiv:2309.02950
  3. van Gerwen, P.; Briling, K. R.; Calvino Alonso, Y.; Franke, M.; Corminboeuf, C. Benchmarking machine-readable vectors of chemical reactions on computed activation barriers. ChemRxiv preprint 2023, doi:10.26434/chemrxiv--2023--0hgbc
  4. Gasteiger, J.; Groß, J.; Günnemann, S. Directional message passing for molecular graphs. arXiv preprint 2020, arXiv:2003.03123
  5. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural message passing for quantum chemistry. International conference on machine learning. 2017; pp 1263–1272
  6. Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.; Kohlhoff, K.; Riley, P. Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds. arXiv preprint 2018, arXiv:1802.08219
  7. Townshend, R. J.; Townshend, B.; Eismann, S.; Dror, R. O. Geometric prediction: Moving beyond scalars. arXiv preprint 2020, arXiv:2006.14163
  8. Satorras, V. G.; Hoogeboom, E.; Welling, M. E(n) Equivariant Graph Neural Networks. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 9323–9332
  9. Schütt, K.; Unke, O.; Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 9377–9388
  10. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint 2018, arXiv:1810.04805
  11. Gasteiger, J.; Giri, S.; Margraf, J. T.; Günnemann, S. Fast and uncertainty-aware directional message passing for non-equilibrium molecules. arXiv preprint 2020, arXiv:2011.14115
  12. Duan, C.; Du, Y.; Jia, H.; Kulik, H. J. Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model. arXiv preprint 2023, arXiv:2304.06174
  13. Geiger, M.; Smidt, T.; M., A.; Miller, B. K.; Boomsma, W.; Dice, B.; Lapchevskyi, K.; Weiler, M.; Tyszkiewicz, M.; Uhrin, M.; Batzner, S.; Madisetti, D.; Frellsen, J.; Jung, N.; Sanborn, S.; jkh,; Wen, M.; Rackers, J.; Rød, M.; Bailey, M. e3nn/e3nn: 2022-12-12. 2022; https://doi.org/10.5281/zenodo.7430260
  14. Landrum, G.; Tosco, P.; Kelley, B.; Ric,; Sriniker,; Cosgrove, D.; Gedeck,; Vianello, R.; NadineSchneider,; Kawashima, E.; N, D.; Jones, G.; Dalke, A.; Cole, B.; Swain, M.; Turk, S.; AlexanderSavelyev,; Vaucher, A.; Wójcikowski, M.; Ichiru Take,; Probst, D.; Ujihara, K.; Scalfani, V. F.; Godin, G.; Pahl, A.; Francois Berenger,; JLVarjo,; Walker, R.; Jasondbiggs,; Strets123, rdkit/rdkit: 2023_03_1 (Q1 2023) Release. 2023; https://zenodo.org/record/7880616
  15. Stärk, H.; Ganea, O.; Pattanaik, L.; Barzilay, R.; Jaakkola, T. EquiBind: Geometric deep learning for drug binding structure prediction. International conference on machine learning. 2022; pp 20503–20521
  16. Liao, Y.-L.; Smidt, T. Equiformer: Equivariant graph attention transformer for 3D atomistic graphs. arXiv preprint 2022, arXiv:2206.11990
  17. Ganea, O.-E.; Huang, X.; Bunne, C.; Bian, Y.; Barzilay, R.; Jaakkola, T.; Krause, A. Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking. arXiv preprint 2022, arXiv:2111.07786
  18. Cordella, L. P.; Foggia, P.; Sansone, C.; Vento, M. An improved algorithm for matching large graphs. 3rd IAPR-TC15 workshop on graph-based representations in pattern recognition. 2001; pp 149–159
  19. Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint 2014, arXiv:1412.6980
  20. Biewald, L. Experiment Tracking with Weights and Biases. 2020; https://www.wandb.com/, Software available from wandb.com
  21. Christensen, A. S.; Faber, F.; Huang, B.; Bratholm, L.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. QML: A Python Toolkit for Quantum Machine Learning. https://github.com/qmlcode/qml, 2017
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: