3DReact: Geometric deep learning for chemical reactions (2312.08307v2)
Abstract: Geometric deep learning models, which incorporate the relevant molecular symmetries within the neural network architecture, have considerably improved the accuracy and data efficiency of predictions of molecular properties. Building on this success, we introduce 3DReact, a geometric deep learning model to predict reaction properties from three-dimensional structures of reactants and products. We demonstrate that the invariant version of the model is sufficient for existing reaction datasets. We illustrate its competitive performance on the prediction of activation barriers on the GDB7-22-TS, Cyclo-23-TS and Proparg-21-TS datasets in different atom-mapping regimes. We show that, compared to existing models for reaction property prediction, 3DReact offers a flexible framework that exploits atom-mapping information, if available, as well as geometries of reactants and products (in an invariant or equivariant fashion). Accordingly, it performs systematically well across different datasets, atom-mapping regimes, as well as both interpolation and extrapolation tasks.
- Huo, H.; Rupp, M. Unified representation for machine learning of molecules and crystals. arXiv preprint 2017, arXiv:1704.06439
 - Briling, K. R.; Calvino Alonso, Y.; Fabrizio, A.; Corminboeuf, C. SPAHH{}^{\mathrm{H}}start_FLOATSUPERSCRIPT roman_H end_FLOATSUPERSCRIPTM(a,b): encoding the density information from guess Hamiltonian in quantum machine learning representations. arXiv preprint 2023, arXiv:2309.02950
 - van Gerwen, P.; Briling, K. R.; Calvino Alonso, Y.; Franke, M.; Corminboeuf, C. Benchmarking machine-readable vectors of chemical reactions on computed activation barriers. ChemRxiv preprint 2023, doi:10.26434/chemrxiv--2023--0hgbc
 - Gasteiger, J.; Groß, J.; Günnemann, S. Directional message passing for molecular graphs. arXiv preprint 2020, arXiv:2003.03123
 - Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural message passing for quantum chemistry. International conference on machine learning. 2017; pp 1263–1272
 - Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.; Kohlhoff, K.; Riley, P. Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds. arXiv preprint 2018, arXiv:1802.08219
 - Townshend, R. J.; Townshend, B.; Eismann, S.; Dror, R. O. Geometric prediction: Moving beyond scalars. arXiv preprint 2020, arXiv:2006.14163
 - Satorras, V. G.; Hoogeboom, E.; Welling, M. E(n) Equivariant Graph Neural Networks. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 9323–9332
 - Schütt, K.; Unke, O.; Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. Proceedings of the 38th International Conference on Machine Learning. 2021; pp 9377–9388
 - Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint 2018, arXiv:1810.04805
 - Gasteiger, J.; Giri, S.; Margraf, J. T.; Günnemann, S. Fast and uncertainty-aware directional message passing for non-equilibrium molecules. arXiv preprint 2020, arXiv:2011.14115
 - Duan, C.; Du, Y.; Jia, H.; Kulik, H. J. Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model. arXiv preprint 2023, arXiv:2304.06174
 - Geiger, M.; Smidt, T.; M., A.; Miller, B. K.; Boomsma, W.; Dice, B.; Lapchevskyi, K.; Weiler, M.; Tyszkiewicz, M.; Uhrin, M.; Batzner, S.; Madisetti, D.; Frellsen, J.; Jung, N.; Sanborn, S.; jkh,; Wen, M.; Rackers, J.; Rød, M.; Bailey, M. e3nn/e3nn: 2022-12-12. 2022; https://doi.org/10.5281/zenodo.7430260
 - Landrum, G.; Tosco, P.; Kelley, B.; Ric,; Sriniker,; Cosgrove, D.; Gedeck,; Vianello, R.; NadineSchneider,; Kawashima, E.; N, D.; Jones, G.; Dalke, A.; Cole, B.; Swain, M.; Turk, S.; AlexanderSavelyev,; Vaucher, A.; Wójcikowski, M.; Ichiru Take,; Probst, D.; Ujihara, K.; Scalfani, V. F.; Godin, G.; Pahl, A.; Francois Berenger,; JLVarjo,; Walker, R.; Jasondbiggs,; Strets123, rdkit/rdkit: 2023_03_1 (Q1 2023) Release. 2023; https://zenodo.org/record/7880616
 - Stärk, H.; Ganea, O.; Pattanaik, L.; Barzilay, R.; Jaakkola, T. EquiBind: Geometric deep learning for drug binding structure prediction. International conference on machine learning. 2022; pp 20503–20521
 - Liao, Y.-L.; Smidt, T. Equiformer: Equivariant graph attention transformer for 3D atomistic graphs. arXiv preprint 2022, arXiv:2206.11990
 - Ganea, O.-E.; Huang, X.; Bunne, C.; Bian, Y.; Barzilay, R.; Jaakkola, T.; Krause, A. Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking. arXiv preprint 2022, arXiv:2111.07786
 - Cordella, L. P.; Foggia, P.; Sansone, C.; Vento, M. An improved algorithm for matching large graphs. 3rd IAPR-TC15 workshop on graph-based representations in pattern recognition. 2001; pp 149–159
 - Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint 2014, arXiv:1412.6980
 - Biewald, L. Experiment Tracking with Weights and Biases. 2020; https://www.wandb.com/, Software available from wandb.com
 - Christensen, A. S.; Faber, F.; Huang, B.; Bratholm, L.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. QML: A Python Toolkit for Quantum Machine Learning. https://github.com/qmlcode/qml, 2017
 
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.