$ρ$-Diffusion: A diffusion-based density estimation framework for computational physics (2312.08153v1)
Abstract: In physics, density $\rho(\cdot)$ is a fundamentally important scalar function to model, since it describes a scalar field or a probability density function that governs a physical process. Modeling $\rho(\cdot)$ typically scales poorly with parameter space, however, and quickly becomes prohibitively difficult and computationally expensive. One promising avenue to bypass this is to leverage the capabilities of denoising diffusion models often used in high-fidelity image generation to parameterize $\rho(\cdot)$ from existing scientific data, from which new samples can be trivially sampled from. In this paper, we propose $\rho$-Diffusion, an implementation of denoising diffusion probabilistic models for multidimensional density estimation in physics, which is currently in active development and, from our results, performs well on physically motivated 2D and 3D density functions. Moreover, we propose a novel hashing technique that allows $\rho$-Diffusion to be conditioned by arbitrary amounts of physical parameters of interest.
- Auto-Encoding Variational Bayes. arXiv e-prints, art. arXiv:1312.6114, December 2013. doi: 10.48550/arXiv.1312.6114.
- Generative Adversarial Networks. arXiv e-prints, art. arXiv:1406.2661, June 2014. doi: 10.48550/arXiv.1406.2661.
- Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows. arXiv e-prints, art. arXiv:1505.05770, May 2015. doi: 10.48550/arXiv.1505.05770.
- Neural Ordinary Differential Equations. arXiv e-prints, art. arXiv:1806.07366, June 2018. doi: 10.48550/arXiv.1806.07366.
- Deep unsupervised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/sohl-dickstein15.html.
- Denoising Diffusion Probabilistic Models. arXiv e-prints, art. arXiv:2006.11239, June 2020. doi: 10.48550/arXiv.2006.11239.
- MADE: Masked Autoencoder for Distribution Estimation. arXiv e-prints, art. arXiv:1502.03509, February 2015. doi: 10.48550/arXiv.1502.03509.
- Density estimation using Real NVP. arXiv e-prints, art. arXiv:1605.08803, May 2016. doi: 10.48550/arXiv.1605.08803.
- Masked Autoregressive Flow for Density Estimation. arXiv e-prints, art. arXiv:1705.07057, May 2017. doi: 10.48550/arXiv.1705.07057.
- Density estimation using deep generative neural networks. Proceedings of the National Academy of Sciences, 118(15):e2101344118, 2021. doi: 10.1073/pnas.2101344118. URL https://www.pnas.org/doi/abs/10.1073/pnas.2101344118.
- FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. arXiv e-prints, art. arXiv:1810.01367, October 2018. doi: 10.48550/arXiv.1810.01367.
- From data to noise to data for mixing physics across temperatures with generative artificial intelligence. Proceedings of the National Academy of Science, 119(32):e2203656119, August 2022. doi: 10.1073/pnas.2203656119.
- Realistic galaxy image simulation via score-based generative models. MNRAS, 511(2):1808–1818, April 2022. doi: 10.1093/mnras/stac130.
- A physics-informed diffusion model for high-fidelity flow field reconstruction. Journal of Computational Physics, 478:111972, April 2023. doi: 10.1016/j.jcp.2023.111972.
- Microscopy image reconstruction with physics-informed denoising diffusion probabilistic model. arXiv e-prints, art. arXiv:2306.02929, June 2023. doi: 10.48550/arXiv.2306.02929.
- Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11, page 681–688, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.
- Diffusion Models Beat GANs on Image Synthesis. arXiv e-prints, art. arXiv:2105.05233, May 2021. doi: 10.48550/arXiv.2105.05233.
- U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv e-prints, art. arXiv:1505.04597, May 2015. doi: 10.48550/arXiv.1505.04597.
- Deep Residual Learning for Image Recognition. arXiv e-prints, art. arXiv:1512.03385, December 2015. doi: 10.48550/arXiv.1512.03385.
- Attention Is All You Need. arXiv e-prints, art. arXiv:1706.03762, June 2017. doi: 10.48550/arXiv.1706.03762.
- Learning Transferable Visual Models From Natural Language Supervision. arXiv e-prints, art. arXiv:2103.00020, February 2021. doi: 10.48550/arXiv.2103.00020.
- Microwave Spectroscopy. Dover Publications, New York, 1975. ISBN 978-0-486-61798-5.
- Alar Toomre. Mergers and Some Consequences. In Beatrice M. Tinsley and D. Campbell Larson, Richard B. Gehret, editors, Evolution of Galaxies and Stellar Populations, page 401, January 1977.
- Dynamics of interacting galaxies. Annual Review of Astronomy and Astrophysics, 30:705–742, January 1992. doi: 10.1146/annurev.aa.30.090192.003421.
- A hierarchical O(N log N) force-calculation algorithm. Nature, 324(6096):446–449, December 1986. doi: 10.1038/324446a0.
- A sparse octree gravitational N-body code that runs entirely on the GPU processor. Journal of Computational Physics, 231(7):2825–2839, April 2012. doi: 10.1016/j.jcp.2011.12.024.
- Transformation between Cartesian and pure spherical harmonic Gaussians. International Journal of Quantum Chemistry, 54(2):83–87, 1995. ISSN 1097-461X. doi: 10.1002/qua.560540202.
- L. Brett. Methods of Spherical Harmonic Analysis. Quarterly Journal of the Royal Astronomical Society, 29:129, June 1988. ISSN 0035-8738.
- Array programming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
- SciPy 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.
- Denoising Diffusion Implicit Models. arXiv e-prints, art. arXiv:2010.02502, October 2020. doi: 10.48550/arXiv.2010.02502.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.