Scintillation characteristics of an undoped CsI crystal at low-temperature for dark matter search (2312.07957v2)
Abstract: The scintillation characteristics of 1 g undoped CsI crystal were studied by directly coupling two silicon photomultipliers (SiPMs) over a temperature range from room temperature to 86 K. The scintillation decay time and light output were measured using x-ray and gamma-ray peaks from a ${109}$Cd radioactive source. An increase in decay time was observed as the temperature decreased from room temperature to 86 K, ranging from 76 ns to 605 ns. The light output increased as well, reaching 37.9 $\pm$ 1.5 photoelectrons per keV electron-equivalent at 86 K, which is approximately 18 times higher than the light yield at room temperature. Leveraging the significantly enhanced scintillation light output of the undoped CsI crystal at low temperature, coupling it with SiPMs results into a promising detector for dark matter search. Both cesium and iodine have a proton odd number, thus they are suitable targets to probe dark matter-proton spin dependent interactions. We evaluated the sensitivity of the detector here proposed to light dark matter-proton spin dependent interactions. We included the Migdal effect and assumed 200\,kg of undoped CsI crystals for the dark matter search. We conclude that undoped CsI coupled to SiPM can exhibit world-competitive sensitivities for low-mass dark matter detection, particularly for the dark matter-proton spin-dependent interaction.
- S. Kim, H. Kim, and Y. Kim, “Scintillator-based detectors for dark matter searches i.” New J. Phys. 12 (2010) 075003.
- J. Amare et al., “Performance of ANAIS-112 experiment after the first year of data taking.” Eur. Phys. J. C 79 (2019) 228.
- R. Bernabei et al., “First model independent results from DAMA/LIBRA-phase2.” Nucl. Phys. Atom. Energy 19 (2018) 307–325.
- G. Adhikari et al., (COSINE-100 Collaboration), “Search for a dark matter-induced annual modulation signal in NaI(Tl) with the COSINE-100 experiment.” Phys. Rev. Lett. 123 (2019) 031302.
- D. Akimov et al., (COHERENT Collaboration), “Observation of Coherent Elastic Neutrino-Nucleus Scattering.” Science 357 (2017) 1123.
- J. J. Choi et al., (NEON Collaboration), “Exploring coherent elastic neutrino-nucleus scattering using reactor electron antineutrinos in the NEON experiment.” Eur. Phys. J. C 83 (2023) 226.
- K. W. Kim et al., (KIMS Collaboration), “Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with NaI(Tl) crystal Detectors.” JHEP 03 (2019) 194.
- G. Adhikari et al., (COSINE-100 Collaboration), “Strong constraints from COSINE-100 on the DAMA dark matter results using the same sodium iodide target.” Sci. Adv. 7 (2021) abk2699.
- G. Adhikari et al., (COSINE-100 Collaboration), “Three-year annual modulation search with COSINE-100.” Phys. Rev. D 106 (2022) 052005.
- J. Amare et al., “Annual Modulation Results from Three Years Exposure of ANAIS-112.” Phys. Rev. D 103 (2021) 102005.
- M. Antonello et al., (SABRE Collaboration), “The SABRE project and the SABRE Proof-of-Principle.” Eur. Phys. J. C 79 (2019) 363.
- R. Bernabei et al., “The DAMA project: Achievements, implications and perspectives.” Prog. Part. Nucl. Phys. 114 (2020) 103810.
- J. J. Choi, B. J. Park, C. Ha, K. W. Kim, S. K. Kim, Y. D. Kim, Y. J. Ko, H. S. Lee, S. H. Lee, and S. L. Olsen, “Improving the light collection using a new NaI(Tl) crystal encapsulation.” Nucl. Instrum. Meth. A 981 (2020) 164556.
- C. Amsler, D. Grögler, W. Joffrain, D. Lindelöf, M. Marchesotti, P. Niederberger, H. Pruys, C. Regenfus, P. Riedler, and A. Rotondi, “Temperature dependence of pure CsI: Scintillation light yield and decay time.” Nucl. Instrum. Meth. A 480 (2002) 494–500.
- S. Park, A. Khan, and H. Kim*, “Characterization of a Pure CsI Crystal at Low Temperature for a Dark-Matter Search.” New Physics: Sae Mulli 71 (2021) 469–475.
- H. Nishimura, M. Sakata, T. Tsujimoto, and M. Nakayama, “Origin of the 4.1-eV luminescence in pure CsI scintillator.” Phys. Rev. B 51 (1995) 2167–2172.
- P. Schotanus and R. Kamermans, “Scintillation characteristics of pure and Tl-doped CsI crystals.” IEEE Tran. Nucl. Sci. 37 (1990) 177–182.
- K. Ding, J. Liu, Y. Yang, and D. Chernyak, “First operation of undoped CsI directly coupled with SiPMs at 77 K.” Eur. Phys. J. C 82 (2022) 344.
- L. Wang, G. d. Li, Z. Y. Yu, X. H. Liang, T. A. Wang, F. Liu, X. L. Sun, C. Guo, and X. Zhang, “Reactor neutrino physics potentials of cryogenic pure-CsI crystal.” arXiv:2212.11515.
- P. K. Lightfoot, G. J. Barker, K. Mavrokoridis, Y. A. Ramachers, and N. J. C. Spooner, “Characterisation of a silicon photomultiplier device for applications in liquid argon based neutrino physics and dark matter searches.” JINST 3 (2008) P10001.
- H. Y. Lee, J. A. Jeon, K. W. Kim, W. K. Kim, H. S. Lee, and M. H. Lee, “Scintillation characteristics of a NaI(Tl) crystal at low-temperature with silicon photomultiplier.” JINST 17 (2022) P02027.
- T. Y. Kim et al., “Study of the internal background of CsI(Tl) crystal detectors for dark matter search.” Nucl. Instrum. Meth. A 500 (2003) 337–344.
- Y. D. Kim et al., “Inhibition of Cs-137 contamination in cesium iodide.” Nucl. Instrum. Meth. A 552 (2005) 456–462.
- H. S. Lee et al., “Development of low-background CsI(Tl) crystals for WIMP search.” Nucl. Instrum. Meth. A 571 (2007) 644–650.
- H. S. Lee et al., (KIMS Collaboration), “First limit on wimp cross section with low background csi(tl) crystal detector.” Phys. Lett. B 633 (2006) 201–208.
- H. S. Lee et al., (KIMS Collaboration), “Limits on WIMP-nucleon cross section with CsI(Tl) crystal detectors.” Phys. Rev. Lett. 99 (2007) 091301.
- S. C. Kim et al., (KIMS Collaboration), “New Limits on Interactions between Weakly Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors.” Phys. Rev. Lett. 108 (2012) 181301.
- K. Shin, O. Gileva, Y. Kim, H. S. Lee, and H. Park, “Reduction of the radioactivity in sodium iodide (NaI) powder by recrystallization method.” J. Radioanal. Nucl. Chem. 317 (2018) 1329–1332.
- K. Shin, J. Choe, O. Gileva, A. Iltis, Y. Kim, C. Lee, H. S. Lee, M. H. Lee, and H. K. Park, “A facility for mass production of ultra-pure NaI powder for the COSINE-200 experiment.” JINST 15 (2020) C07031.
- K. Shin, J. Choe, O. Gileva, A. Iltis, Y. Kim, Y. Kim, C. Lee, E. Lee, H. Lee, and M. H. Lee, “Mass production of ultra-pure NaI powder for COSINE-200.” Front. in Phys. 11 (2023) 1142849.
- S. Ra et al., “Scintillation crystal growth at the CUP.” PoS ICHEP2018 (2019) 668.
- B. J. Park et al., (COSINE Collaboration), “Development of ultra-pure NaI(Tl) detectors for the COSINE-200 experiment.” Eur. Phys. J. C 80 (2020) 814.
- H. Lee et al., “Performance of an ultra-pure NaI(Tl) detector produced by an indigenously-developed purification method and crystal growth for the COSINE-200 experiment.” Front. in Phys. 11 (2023) 1142765.
- A. Ferri, F. Acerbi, A. Gola, G. Paternoster, C. Piemonte, and N. Zorzi, “A comprehensive study of temperature stability of Silicon PhotoMultiplier.” Journal of Instrumentation 9 (2014) P06018.
- T. Teranishi, Y. Ueno, M. Osada, S. Oka, K. Iribe, H. Yoshida, H. Sakai, and T. Kubo, “Pulse shape analysis of signals from SiPM-based CsI(Tl) detectors for low-energy protons: Saturation correction and particle identification.” Nucl. Instrum. Meth. A 989 (2021) 164967.
- S. M. Sze and G. Gibbons, “AVALANCHE BREAKDOWN VOLTAGES OF ABRUPT AND LINEARLY GRADED p-n JUNCTIONS IN Ge, Si, GaAs, AND GaP.” Appl. Phys. Lett. 8 (1966) 111–113.
- N. Dinu, A. Nagai, and A. Para, “Breakdown voltage and triggering probability of SiPM from IV curves at different temperatures.” Nucl. Instrum. Meth. A 845 (2017) 64–68.
- A. Nepomuk Otte, D. Garcia, T. Nguyen, and D. Purushotham, “Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers.” Nucl. Instrum. Meth. A 846 (2017) 106–125.
- N. Dinu, A. Nagai, and A. Para, “Studies of MPPC detectors down to cryogenic temperatures.” Nucl. Instrum. Meth. A 787 (2015) 275–279.
- G. Collazuol, M. G. Bisogni, S. Marcatili, C. Piemonte, and A. Del Guerra, “Studies of silicon photomultipliers at cryogenic temperatures.” Nucl. Instrum. Meth. A 628 (2011) 389–392.
- C. L. Woody, P. W. Levy, J. A. Kierstead, T. Skwarnicki, Z. Sobolewski, M. Goldberg, N. Horwitz, P. Souder, and D. F. Anderson, “Readout techniques and radiation damage of undoped cesium iodide.” IEEE Trans. Nucl. Sci. 37 (1990) 492–499.
- K. Ding, D. Chernyak, and J. Liu, “Light yield of cold undoped CsI crystal down to 13 keV and the application of such crystals in neutrino detection.” Eur. Phys. J. C 80 (2020) 1146.
- H. S. Lee, Dark Matter Search with CsI(Tl) Crystals. Ph.d dissertation, Seoul National University, 2007.
- S. C. Kim, Dark Matter Search with 100kg of CsI(Tl) Crystals. Ph.d dissertation, Seoul National University, 2011.
- G. Adhikari et al., (COSINE-100 Collaboration), “Lowering the energy threshold in COSINE-100 dark matter searches.” Astropart. Phys. 130 (2021) 102581.
- A. Migdal, “Ionization of atoms accompanying α𝛼\alphaitalic_α- and β𝛽\betaitalic_β-decay..” J. Phys. USSR 4 (1941) 449.
- M. Ibe, W. Nakano, Y. Shoji, and K. Suzuki, “Migdal Effect in Dark Matter Direct Detection Experiments.” JHEP 03 (2018) 194.
- G. Adhikari et al., (COSINE-100 Collaboration), “Searching for low-mass dark matter via the Migdal effect in COSINE-100.” Phys. Rev. D 105 (2022) 042006.
- Y. J. Ko and H. S. Lee, “Sensitivities for coherent elastic scattering of solar and supernova neutrinos with future NaI(Tl) dark matter search detectors of COSINE-200/1T.” Astropart. Phys. 153 (2023) 102890.
- C. M. Lewis and J. I. Collar, “Response of undoped cryogenic CsI to low-energy nuclear recoils.” Phys. Rev. C 104 (2021) 014612.
- E. A. et al., (XENON Collaboration), “Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T.” Phys. Rev. Lett. 123 (2019) 241803.
- J. I. Collar, “Search for a nonrelativistic component in the spectrum of cosmic rays at Earth.” Phys. Rev. D 98 (2018) 023005.
- R. A. et al., (SuperCDMS Collaboration), “Low-mass dark matter search with CDMSlite.” Phys. Rev. D 97 (2018) 022002.
- C. A. et al., (PICO Collaboration), “Dark matter search results from the complete exposure of the pico-60 c3f8subscriptnormal-c3subscriptnormal-f8{\mathrm{c}}_{3}{\mathrm{f}}_{8}roman_c start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_f start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT bubble chamber.” Phys. Rev. D 100 (2019) 022001.
- E. B. et al., “Final results of the PICASSO dark matter search experiment.” Astropart. Phys. 90 (2017) 85–92.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.