Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum Spin Hall Effect in Magnetic Graphene

Published 12 Dec 2023 in cond-mat.mes-hall | (2312.07515v2)

Abstract: A promising approach to attain long-distance coherent spin propagation is accessing topological spin-polarized edge states in graphene. Achieving this without external magnetic fields necessitates engineering graphene band structure, obtainable through proximity effects in van der Waals heterostructures. In particular, proximity-induced staggered potentials and spin-orbit coupling are expected to form a topological bulk gap in graphene with gapless helical edge states that are robust against disorder. In this work, we detect the spin-polarized helical edge transport in graphene at zero external magnetic field, allowed by the proximity of an interlayer antiferromagnet, CrPS$_4$. We show the coexistence of the quantum spin Hall (QSH) states and magnetism in graphene, where the induced spin-orbit and exchange couplings also give rise to a large anomalous Hall (AH) effect. The detection of the QSH states at zero external magnetic field, together with the AH signal that persists up to room temperature, opens the route for practical applications of magnetic graphene in quantum spintronic circuitries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (57)
  1. The electronic properties of graphene. Reviews of Modern Physics 81, 109 (2009).
  2. Graphene spintronics. Nature Nanotechnology 9, 794–807 (2014).
  3. Van der Waals heterostructures for spintronics and opto-spintronics. Nature Nanotechnology 16, 856–868 (2021).
  4. Wei, P. et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nature Materials 15, 711–716 (2016).
  5. Safeer, C. et al. Room-temperature spin Hall effect in graphene/MoS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT van der Waals heterostructures. Nano Letters 19, 1074–1082 (2019).
  6. Mendes, J. et al. Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet. Physical Review Letters 115, 226601 (2015).
  7. Charge-to-spin conversion by the rashba-edelstein effect in two-dimensional van der Waals heterostructures up to room temperature. Nano Letters 19, 5959–5966 (2019).
  8. Benítez, L. A. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nature Materials 19, 170–175 (2020).
  9. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect. Physical Review Letters 114, 016603 (2015).
  10. Ghiasi, T. S. et al. Electrical and thermal generation of spin currents by magnetic bilayer graphene. Nature Nanotechnology 16, 788–794 (2021).
  11. Van der Waals heterostructures. Nature 499, 419–425 (2013).
  12. Yang, H.-X. et al. Proximity effects induced in graphene by magnetic insulators: first-principles calculations on spin filtering and exchange-splitting gaps. Physical Review Letters 110, 046603 (2013).
  13. Anomalous, spin, and valley Hall effects in graphene deposited on ferromagnetic substrates. 2D Materials 4, 034003 (2017).
  14. The crystal structure of chromium thiophosphate, CrPS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 33, 1399–1404 (1977).
  15. Young, A. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2014).
  16. Veyrat, L. et al. Helical quantum Hall phase in graphene on SrTiO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT. Science 367, 781–786 (2020).
  17. Qiao, Z. et al. Quantum anomalous Hall effect in graphene from rashba and exchange effects. Physical Review B 82, 161414 (2010).
  18. Quantum anomalous Hall effect in single-layer and bilayer graphene. Physical Review B 83, 155447 (2011).
  19. Microscopic theory of quantum anomalous Hall effect in graphene. Physical Review B 85, 115439 (2012).
  20. Qiao, Z. et al. Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Physical Review Letters 112, 116404 (2014).
  21. Quantum anomalous Hall effect in graphene-based heterostructure. Scientific Reports 5, 10629 (2015).
  22. Robust quantum anomalous Hall effect in graphene-based van der Waals heterostructures. Physical Review B 92, 165418 (2015).
  23. Zanolli, Z. et al. Hybrid quantum anomalous Hall effect at graphene-oxide interfaces. Physical Review B 98, 155404 (2018).
  24. Högl, P. et al. Quantum anomalous Hall effects in graphene from proximity-induced uniform and staggered spin-orbit and exchange coupling. Physical Review Letters 124, 136403 (2020).
  25. Wang, X.-L. Dirac spin-gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects. National Science Review 4, 252–257 (2017).
  26. Song, H.-D. et al. Electrical control of magnetic proximity effect in a graphene/multiferroic heterostructure. Applied Physics Letters 113 (2018).
  27. Song, H.-D. et al. Asymmetric modulation on exchange field in a graphene/BiFeO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT heterostructure by external magnetic field. Nano Letters 18, 2435–2441 (2018).
  28. Wu, Y. et al. Large exchange splitting in monolayer graphene magnetized by an antiferromagnet. Nature Electronics 3, 604–611 (2020).
  29. Wu, Y. et al. Magnetic exchange field modulation of quantum Hall ferromagnetism in 2d van der Waals CrCl33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/graphene heterostructures. ACS Applied Materials and Interfaces 13, 10656–10663 (2021).
  30. Two-dimensional ferromagnetism detected by proximity-coupled quantum Hall effect of graphene. npj Quantum Materials 7, 1–7 (2022).
  31. Wang, Y. et al. Quantum Hall phase in graphene engineered by interfacial charge coupling. Nature Nanotechnology 1–8 (2022).
  32. Tseng, C.-C. et al. Gate-tunable proximity effects in graphene on layered magnetic insulators. Nano Letters (2022).
  33. Lee, J. et al. Structural and optical properties of single-and few-layer magnetic semiconductor CrPS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. ACS Nano 11, 10935–10944 (2017).
  34. Peng, Y. et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. Advanced Materials 32, 2001200 (2020).
  35. Anomalous Hall effect. Reviews of Modern Physics 82, 1539 (2010).
  36. Proximity effects in graphene on monolayers of transition-metal phosphorus trichalcogenides MPX33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT (M: Mn, Fe, Ni, Co, and X: S, Se). Physical Review B 106, 035137 (2022).
  37. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
  38. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
  39. Berry phase effects on electronic properties. Reviews of Modern Physics 82, 1959 (2010).
  40. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and berry-phase effects. Physical Review B 59, 14915 (1999).
  41. Engineering proximity exchange by twisting: Reversal of ferromagnetic and emergence of antiferromagnetic Dirac bands in graphene/Cr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTGe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTTe66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPT. Physical Review Letters 128, 106401 (2022).
  42. Magnetic proximity induced valley-contrasting quantum anomalous Hall effect in a graphene-CrBr33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT van der Waals heterostructure. Physical Review B 105, 235422 (2022).
  43. von Klitzing, K. The quantized Hall effect. Reviews of Modern Physics 58, 519–531 (1986).
  44. Quantum spin Hall effect in graphene. Physical Review Letters 95, 226801 (2005).
  45. Spin-filtered edge states and quantum Hall effect in graphene. Physical Review Letters 96, 176803 (2006).
  46. Kharitonov, M. Edge excitations of the canted antiferromagnetic phase of the ν𝜈\nuitalic_ν= 0 quantum Hall state in graphene: A simplified analysis. Physical Review B 86, 075450 (2012).
  47. Büttiker, M. Edge-state physics without magnetic fields. Science 325, 278–279 (2009).
  48. Büttiker, M. Four-terminal phase-coherent conductance. Physical Review Letters 57, 1761 (1986).
  49. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).
  50. Zollner, K. et al. Scattering-induced and highly tunable by gate damping-like spin-orbit torque in graphene doubly proximitized by two-dimensional magnet Cr22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTGe22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTTe66{}_{6}start_FLOATSUBSCRIPT 6 end_FLOATSUBSCRIPT and monolayer WS22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. Physical Review Research 2, 043057 (2020).
  51. Abanin, D. A. et al. Dissipative quantum Hall effect in graphene near the Dirac point. Physical Review Letters 98, 196806 (2007).
  52. Zhu, W. et al. Interface-enhanced room-temperature curie temperature in CrPS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT/graphene van der waals heterostructure. Physical Review B 108, L100406 (2023).
  53. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Applied Physics Letters 105, 013101 (2014).
  54. Wu, F. et al. Gate-controlled magnetotransport and electrostatic modulation of magnetism in 2D magnetic semiconductor CrPS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT. Advanced Materials 2211653 (2023).
  55. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. npj 2D Materials and Applications 2, 6 (2018).
  56. Gannett, W. et al. Boron nitride substrates for high mobility chemical vapor deposited graphene. Applied Physics Letters 98 (2011). 242105.
  57. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Physical Review B 80, 235402 (2009).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.