Papers
Topics
Authors
Recent
2000 character limit reached

First-principles exploration of superconductivity in intercalated bilayer borophene phases (2312.07310v2)

Published 12 Dec 2023 in cond-mat.supr-con and cond-mat.mtrl-sci

Abstract: We explore the emergence of phonon-mediated superconductivity in bilayer borophenes by controlled intercalation with elements from the groups of alkali, alkaline-earth, and transition metals, using systematic first-principles and Eliashberg calculations. We show that the superconducting properties are primarily governed by the interplay between the out-of-plane ($p_{z}$) boron states and the partially occupied in-plane ($s+p_{x,y}$) bonding states at the Fermi level. Our Eliashberg calculations indicate that intercalation with alkaline-earth elements leads to the highest superconducting critical temperatures ($T_{c}$). Specifically, Be in $\delta_{4}$, Mg in $\chi_{3}$, and Ca in the kagome bilayer borophene demonstrate superior performance with $T_{c}$ reaching up to 58~K. Our study therefore reveals that intercalated bilayer borophene phases are not only more resilient to chemical deterioration, but also harbor enhanced $T_{c}$ values compared to their monolayer counterparts, underscoring their substantial potential for the development of boron-based two-dimensional superconductors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. W. G. Woods, Environmental Health Perspectives 102, 5 (1994).
  2. A. R. Oganov and V. L. Solozhenko, Journal of Superhard Materials 31, 285 (2009).
  3. I. Boustani, Chemical Physics Letters 240, 135 (1995).
  4. H. Liu, J. Gao, and J. Zhao, Scientific Reports 3, 3238 (2013a).
  5. Y. Liu, E. S. Penev, and B. I. Yakobson, Angewandte Chemie International Edition 52, 3156 (2013b).
  6. E. S. Penev, A. Kutana, and B. I. Yakobson, Nano Letters 16, 2522 (2016).
  7. Y. Zhao, S. Zeng, and J. Ni, Applied Physics Letters 108, 242601 (2016).
  8. Y. Singh, S. Back, and Y. Jung, Physical Chemistry Chemical Physics 20, 21095 (2018).
  9. Y. Mu and S.-D. Li, The Journal of Physical Chemistry C 124, 28145 (2020).
  10. T. Niu and M. Zhou, Nano Today 46, 101608 (2022).
  11. R. Yang and M. Sun, Materials Today Physics 23, 100652 (2022).
  12. G. M. Eliashberg, Soviet Physics - JETP 11, 696 (1960).
  13. G. M. Eliashberg, Soviet Physics - JETP 112, 1000 (1961).
  14. W. L. McMillan, Physical Review Journal Archive 167, 331 (1968).
  15. P. B. Allen and R. C. Dynes, Physical Review B 12, 905 (1975).
  16. See Supplemental Material at http://link.aps.org/supplemental/xx.yyy/prm.
  17. I. Errea, M. Calandra, and F. Mauri, Phys. Rev. Lett. 111, 177002 (2013).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.