Papers
Topics
Authors
Recent
2000 character limit reached

Dimensional Reduction in Quantum Optics (2312.06764v2)

Published 11 Dec 2023 in quant-ph and physics.atom-ph

Abstract: One-dimensional quantum optical models usually rest on the intuition of large scale separation or frozen dynamics associated with the different spatial dimensions, for example when studying quasi one-dimensional atomic dynamics, potentially resulting in the violation of $3+1D$ Maxwell's theory. Here, we provide a rigorous foundation for this approximation by means of the light-matter interaction. We show how the quantized electromagnetic field can be decomposed $-$ exactly $-$ into an infinite number of subfields living on a lower dimensional subspace and containing the entirety of the spectrum when studying axially symmetric setups, such as with an optical fiber, a laser beam or a waveguide. The dimensional reduction approximation then corresponds to a truncation in the number of such subfields that in turn, when considering the interaction with for instance an atom, corresponds to a modification to the atomic spatial profile. We explore under what conditions the standard approach is justified and when corrections are necessary in order to account for the dynamics due to the neglected spatial dimensions. In particular we will examine what role vacuum fluctuations and structured laser modes play in the validity of the approximation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. N. Funai and E. Martín-Martínez, Faster-than-light signaling in the rotating-wave approximation, Phys. Rev. D 100, 065021 (2019).
  2. R. Lopp, E. Martín-Martínez, and D. N. Page, Relativity and quantum optics: Accelerated atoms in optical cavities, Class. Quantum Grav. 35, 224001 (2018).
  3. E. McKay, A. Lupascu, and E. Martín-Martínez, Finite sizes and smooth cutoffs in superconducting circuits, Phys. Rev. A 96, 052325 (2017).
  4. D. Meiser and P. Meystre, Superstrong coupling regime of cavity quantum electrodynamics, Phys. Rev. A 74, 065801 (2006).
  5. L. Pitaevskii and S. Stringari, Bose-Einstein condensation and superfluidity (Oxford University Press, Oxford, 2016).
  6. L. Salasnich, A. Parola, and L. Reatto, Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. Rev. A 65, 043614 (2002).
  7. A. Tononi and L. Salasnich, Low-dimensional quantum gases in curved geometries, Nat. Rev. Phys. , 1 (2023).
  8. O. Painter, J. Vučković, and A. Scherer, Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, J. Opt. Soc. Am. B 16, 275 (1999).
  9. W. Zhou, Z. Qiang, and L. Chen, Photonic crystal defect mode cavity modelling: a phenomenological dimensional reduction approach, J. Phys. D: Appl. Phys. 40, 2615 (2007).
  10. N. F. Johnson, Quantum dots: few-body, low-dimensional systems, J. Phys.: Condens. Matter 7, 965 (1995).
  11. S. M. Reimann and M. Manninen, Electronic structure of quantum dots, Rev. Mod. Phys. 74, 1283 (2002).
  12. G. Shpatakovskaya, Semiclassical model of a one-dimensional quantum dot, J. Exp. Theor. Phys. 102, 466 (2006).
  13. K. Vogel, V. M. Akulin, and W. P. Schleich, Quantum state engineering of the radiation field, Phys. Rev. Lett. 71, 1816 (1993).
  14. H. Ooguri, Spectrum of hawking radiation and the Huygens principle, Phys. Rev. D 33, 3573 (1986).
  15. R. H. Jonsson, E. Martín-Martínez, and A. Kempf, Information transmission without energy exchange, Phys. Rev. Lett. 114, 110505 (2015).
  16. A. D. Boozer, Raman transitions in cavity QED, Phd thesis, California Institute of Technology (2005).
  17. D. J. Heinzen and M. S. Feld, Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator, Phys. Rev. Lett. 59, 2623 (1987).
  18. E. J. Bochove and S. A. Shakir, Analysis of a spatial-filtering passive fiber laser beam combining system, IEEE J. Sel. Top. Quantum Electron. 15, 320 (2009).
  19. K. F. Renk, Basics of laser physics (Springer Berlin, Heidelberg, 2010).
  20. H. Kogelnik and T. Li, Laser beams and resonators, Appl. Opt. 5, 1550 (1966).
  21. M. O. Scully and W. E. Lamb, Quantum theory of an optical maser. i. general theory, Phys. Rev. 159, 208 (1967).
  22. B. Fischer and R. Weill, When does single-mode lasing become a condensation phenomenon?, Opt. Express 20, 26704 (2012).
  23. P. Kirton and J. Keeling, Thermalization and breakdown of thermalization in photon condensates, Phys. Rev. A 91, 033826 (2015).
  24. L. Childress, A. S. Sørensen, and M. D. Lukin, Mesoscopic cavity quantum electrodynamics with quantum dots, Phys. Rev. A 69, 042302 (2004).
  25. U. Hohenester, Cavity quantum electrodynamics with semiconductor quantum dots: Role of phonon-assisted cavity feeding, Phys. Rev. B 81, 155303 (2010).
  26. H. Mabuchi and A. C. Doherty, Cavity quantum electrodynamics: Coherence in context, Science 298, 1372 (2002).
  27. S. Haroche and D. Kleppner, Cavity Quantum Electrodynamics, Phys. Today 42, 24 (1989).
  28. K. Kakazu and Y. S. Kim, Quantization of electromagnetic fields in cavities and spontaneous emission, Phys. Rev. A 50, 1830 (1994).
  29. K. Kakazu and Y. S. Kim, Field quantization and spontaneous emission in circular cylindrical cavities, Prog. Theor. Phys. 96, 883 (1996).
  30. M. O. Scully and M. S. Zubairy, Quantum optics (Cambridge University Press, Cambridge, 1997).
  31. B. Deb and S. Sen, Interaction of a moving two-level atom with a single-mode quantized cavity field, Phys. Rev. A 56, 2470 (1997).
  32. S. J. Van Enk and H. J. Kimble, On the classical character of control fields in quantum information processing, Quantum Info. Comput. 2, 1–13 (2002).
  33. K. Randles and S. J. van Enk, Quantum state transfer and input-output theory with time reversal, Phys. Rev. A 108, 012421 (2023).
  34. J. Larson and T. Mavrogordatos, The Jaynes–Cummings Model and Its Descendants, 2053-2563 (IOP Publishing, Bristol, 2021).
  35. W. Zhu, Z. H. Wang, and D. L. Zhou, Multimode effects in cavity QED based on a one-dimensional cavity array, Phys. Rev. A 90, 043828 (2014).
  36. V. Paulisch, H. J. Kimble, and A. González-Tudela, Universal quantum computation in waveguide QED using decoherence free subspaces, New J. Phys. 18, 043041 (2016).
  37. B. M. Garraway, The Dicke model in quantum optics: Dicke model revisited, Phil. Trans. R. Soc. 369, 1137 (2011).
  38. A. Silberfarb and I. H. Deutsch, Continuous measurement with traveling-wave probes, Phys. Rev. A 68, 013817 (2003).
  39. P. Ehrenfest, In what way does it become manifest in the fundamental laws of physics that space has three dimensions (KNAW, Amsterdam, 1918) pp. 200–209.
  40. R. Schippa and R. Schnaubelt, On quasilinear Maxwell equations in two dimensions, Pure Appl. Anal. 4, 313 (2022).
  41. M. Hammer and O. V. Ivanova, Effective index approximations of photonic crystal slabs: a 2-to-1-D assessment, Opt. Quantum Electron. 41, 267 (2009).
  42. A. Edery, N. Graham, and I. MacDonald, 3⁢d3𝑑3d3 italic_d scalar model as a 4⁢d4𝑑4d4 italic_d perfect conductor limit: Dimensional reduction and variational boundary conditions, Phys. Rev. D 79, 125018 (2009).
  43. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations (Dover Publications, Mineola, 2003).
  44. D. Grimmer, R. Lopp, and E. Martín-Martínez, Dimensional reduction of cavities with axial symmetry: A complete analysis of when an optical fiber is approximately one dimensional, Phys. Rev. A 104, 013723 (2021).
  45. G. W. Hanson and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction (Springer Science+Business Media, New York, 2001).
  46. S. Hassani, Mathematical physics: a modern introduction to its foundations (Springer Cham, Heidelberg, 2013).
  47. A. Vukics, T. Grießer, and P. Domokos, Elimination of the 𝑨𝑨\bm{A}bold_italic_A-square problem from cavity QED, Phys. Rev. Lett. 112, 073601 (2014).
  48. S. K. Adhikari, Quantum scattering in two dimensions, Am. J. Phys. 54, 362 (1986).
  49. D. S. Petrov and G. V. Shlyapnikov, Interatomic collisions in a tightly confined Bose gas, Phys. Rev. A 64, 012706 (2001).
  50. E. Martín-Martínez and P. Rodriguez-Lopez, Relativistic quantum optics: The relativistic invariance of the light-matter interaction models, Phys. Rev. D 97, 105026 (2018).
  51. C. J. Foot, Atomic physics (OUP, Oxford, 2004).
  52. R. Regener and W. Sohler, Loss in low-finesse ti: Linbo 3 optical waveguide resonators, Appl. Phys. B 36, 143 (1985).
  53. T. Kessler, T. Legero, and U. Sterr, Thermal noise in optical cavities revisited, J. Opt. Soc. Am. B 29, 178 (2012).
  54. W. L. Erikson and S. Singh, Polarization properties of Maxwell-Gaussian laser beams, Phys. Rev. E 49, 5778 (1994).
  55. I. H. Deutsch and J. C. Garrison, Paraxial quantum propagation, Phys. Rev. A 43, 2498 (1991).
  56. M. Havukainen, Wavelets as basis functions in canonical quantization, arXiv:quant-ph/0006083  (2000).
  57. I. Y. Novikov and S. B. Stechkin, Basic wavelet theory, Russ. Math. Surv. 53, 1159 (1998).
  58. M. Unser and T. Blu, Wavelet theory demystified, IEEE Trans. Signal Process 51, 470 (2003).
  59. C. P. Boyer, E. G. Kalnins, and W. Miller, Symmetry and separation of variables for the Helmholtz and laplace equations, Nagoya Math. J. 60, 35–80 (1976).
  60. S. Y. Buhmann and D.-G. Welsch, Dispersion forces in macroscopic quantum electrodynamics, Prog. Quantum. Electrn. 31, 51 (2007).
  61. N. A. Gumerov and R. Duraiswami, Fast multipole methods for the Helmholtz equation in three dimensions (Elsevier, Heidelberg, 2005).
  62. P. M. Morse and H. Feshbach, Methods of theoretical physics, Am. J. Phys. 22, 410 (1954).
  63. J. A. Stratton and L. J. Chu, Diffraction theory of electromagnetic waves, Phys. Rev. 56, 99 (1939).
  64. N. Stritzelberger and A. Kempf, Coherent delocalization in the light-matter interaction, Phys. Rev. D 101, 036007 (2020).
  65. J. Sakurai and J. Napolitano, Modern quantum mechanics. 2-nd edition (Cambridge University Press, Cambridge, 2014).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.