Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction (2312.06164v3)

Published 11 Dec 2023 in cs.CV

Abstract: Shape modeling of volumetric medical images is crucial for quantitative analysis and surgical planning in computer-aided diagnosis. To alleviate the burden of expert clinicians, reconstructed shapes are typically obtained from deep learning models, such as Convolutional Neural Networks (CNNs) or transformer-based architectures, followed by the marching cube algorithm. However, automatic shape reconstruction often falls short of perfection due to the limited resolution of images and the absence of shape prior constraints. To overcome these limitations, we propose the Reliable Shape Interaction with Implicit Template (ReShapeIT) network, which models anatomical structures in continuous space rather than discrete voxel grids. ReShapeIT represents an anatomical structure with an implicit template field shared within the same category, complemented by a deformation field. It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape. The valid template shape can then be utilized for implicit generalization. A Template Interaction Module (TIM) is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes. Experimental results on three datasets demonstrate the superiority of our approach in anatomical structure reconstruction. The Chamfer Distance/Earth Mover's Distance achieved by ReShapeIT are 0.225/0.318 on Liver, 0.125/0.067 on Pancreas, and 0.414/0.098 on Lung Lobe.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube