Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tenplex: Dynamic Parallelism for Deep Learning using Parallelizable Tensor Collections (2312.05181v3)

Published 8 Dec 2023 in cs.DC, cs.AI, and cs.LG

Abstract: Deep learning (DL) jobs use multi-dimensional parallelism, i.e. combining data, model, and pipeline parallelism, to use large GPU clusters efficiently. Long-running jobs may experience changes to their GPU allocation: (i) resource elasticity during training adds or removes GPUs; (ii) hardware maintenance may require redeployment on different GPUs; and (iii) GPU failures force jobs to run with fewer devices. Current DL frameworks tie jobs to a set of GPUs and thus lack support for these scenarios. In particular, they cannot change the multi-dimensional parallelism of an already-running job in an efficient and model-independent way. We describe Scalai, a state management library for DL systems that enables jobs to change their parallelism dynamically after the GPU allocation is updated at runtime. Scalai achieves this through a new abstraction, a parallelizable tensor collection (PTC), that externalizes the job state during training. After a GPU change, Scalai uses the PTC to transform the job state: the PTC repartitions the dataset state under data parallelism and exposes it to DL workers through a virtual file system; and the PTC obtains the model state as partitioned checkpoints and transforms them to reflect the new parallelization configuration. For efficiency, Scalai executes PTC transformations in parallel with minimum data movement between workers. Our experiments show that Scalai enables DL jobs to support dynamic parallelization with low overhead.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube