Selective damping of plasmons in coupled two-dimensional systems by Coulomb drag (2312.05097v1)
Abstract: The Coulomb drag is a many-body effect observed in proximized low-dimensional systems. It appears as emergence of voltage in one of them upon passage of bias current in another. The magnitude of drag voltage can be strongly affected by exchange of plasmonic excitations between the layers; however, the reverse effect of Coulomb drag on properties of plasmons has not been studied. Here, we study the plasmon spectra and damping in parallel two-dimensional systems in the presence of Coulomb drag. We find that Coulomb drag leads to selective damping of one of the two fundamental plasma modes of a coupled bilayer. For identical electron doping of both layers, the drag suppresses the acoustic plasma mode; while for symmetric electron-hole doping of the coupled pair, the drag suppresses the optical plasma mode. The selective damping can be observed both for propagating modes in extended bilayers and for localized plasmons in bilayers confined by source and drain contacts. The discussed effect may provide access to the strength of Coulomb interaction in 2d electron systems from various optical and microwave scattering experiments.
- B. Narozhny and A. Levchenko, Reviews of Modern Physics 88, 025003 (2016).
- J. Eisenstein, Annu. Rev. Condens. Matter Phys. 5, 159 (2014).
- P. Solomon and B. Laikhtman, Superlattices and microstructures 10, 89 (1991).
- K. Flensberg and B. Y.-K. Hu, Physical review letters 73, 3572 (1994).
- K. Flensberg and B. Y.-K. Hu, Physical Review B 52, 14796 (1995).
- D. Zverevich and A. Levchenko, arXiv preprint arXiv:2306.13534 (2023).
- D. Svintsov, Physical Review B 97, 1 (2018).
- A. Lucas and S. Das Sarma, Phys. Rev. B 97, 115449 (2018).
- J. Hofmann and S. D. Sarma, Physical Review B 106, 205412 (2022).
- M. Semenyakin and G. Falkovich, Physical Review B 97, 085127 (2018).
- A. S. Petrov and D. Svintsov, Physical Review Applied 17, 054026 (2022).
- W. Kohn, Phys. Rev. 123, 1242 (1961).
- A. A. Zabolotnykh and V. A. Volkov, Phys. Rev. B 103, 125301 (2021).
- P. S. Alekseev, Physical Review B 98, 165440 (2018).
- K. Kapralov and D. Svintsov, Physical Review B 106, 115415 (2022).
- S. D. Sarma and A. Madhukar, Physical Review B 23, 805 (1981).
- M. Pogrebinskii, Soviet Physics-Semiconductors 11, 372 (1977).
- E. Lifshitz and L. Pitaevskii, “Physical kinetics pergamon press,” (1981).
- E. Hwang and S. D. Sarma, Physical Review B 80, 205405 (2009).
- P. S. Alekseev and A. P. Alekseeva, Physical Review Letters 123, 236801 (2019).
- Q. Li and S. Das Sarma, Phys. Rev. B 87, 085406 (2013).
- L. Zheng and S. D. Sarma, Physical Review B 53, 9964 (1996).
- S. Das Sarma and E. H. Hwang, Physical Review Letters 81, 4216 (1998), arXiv:9810374 [cond-mat] .
- G. Alymov and D. Svintsov, arXiv preprint arXiv:2310.07307 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.