Papers
Topics
Authors
Recent
2000 character limit reached

Angular and energy distributions of positrons created in subcritical and supercritical slow collisions of heavy nuclei (2312.05069v1)

Published 8 Dec 2023 in hep-ph

Abstract: Positron creation probabilities as well as energy and angular distributions of outgoing positrons in slow collisions of two identical heavy nuclei are obtained within the two-center approach beyond the monopole approximation. The time-dependent Dirac equation for positron wave functions is solved with the help of the generalized pseudospectral method in modified prolate spheroidal coordinates adapted for variable internuclear separation. Depending on the nuclear charge, the results are obtained for both subcritical and supercritical regimes of the positron creation. The signatures of transition to the supercritical regime in the total positron creation probabilities and energy spectra are discussed. The angular distributions of emitted positrons demonstrate a high degree of isotropy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. F. Ehlotzky, K. Krajewska, and J. Z. Kamiński, Fundamental processes of quantum electrodynamics in laser fields of relativistic power, Rep. Prog. Phys. 72, 046401 (2009).
  2. R. Ruffini, G. Vereshchagin, and S.-S. Xue, Electron–positron pairs in physics and astrophysics: From heavy nuclei to black holes, Phys. Rep. 487, 1 (2010).
  3. I. Pomeranchuk and J. Smorodinsky, J. Phys. USSR 9, 97 (1945).
  4. S. S. Gershtein and Y. B. Zeldovich, Zh. Eksp. Teor. Fiz. 57, 654 (1969), [Sov. Phys. JETP 30, 358 (1970)].
  5. W. Pieper and W. Greiner, Interior electron shells in superheavy nuclei, Z. Phys. A 218, 327 (1969).
  6. V. S. Popov, Pis’ma Zh. Eksp. Teor. Fiz. 11, 254 (1970a), [JETP Lett. 11, 162 (1970)].
  7. V. S. Popov, Yad. Fiz. 12, 429 (1970b), [Sov. J. Nucl. Phys. 12, 235 (1971)].
  8. V. S. Popov, Zh. Eksp. Teor. Fiz. 59, 965 (1970c), [Sov. Phys. JETP 32, 526 (1971)].
  9. V. S. Popov, Zh. Eksp. Teor. Fiz. 60, 1228 (1971), [Sov. Phys. JETP 33, 665 (1971)].
  10. Y. B. Zeldovich and V. S. Popov, Usp. Fiz. Nauk 105, 403 (1971), [Sov. Phys. Usp. 14, 673 (1972)].
  11. B. Müller, J. Rafelski, and W. Greiner, Electron shells in over-critical external fields, Z. Phys. A 257, 62 (1972b).
  12. V. D. Mur and V. S. Popov, Teor. Mat. Fiz. 27, 204 (1976), [Theor. Math. Phys. 27, 429 (1976)].
  13. B. Müller, Positron creation in superheavy quasi-molecules, Annu. Rev. Nucl. Sci. 26, 351 (1976).
  14. J. Reinhardt and W. Greiner, Quantum electrodynamics of strong fields, Rep. Prog. Phys. 40, 219 (1977).
  15. J. Rafelski, L. P. Fulcher, and A. Klein, Fermions and bosons interacting with arbitrarily strong external fields, Phys. Rep. 38, 227 (1978).
  16. W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer-Verlag, Berlin, 1985).
  17. V. S. Popov, Zh. Eksp. Teor. Fiz. 65, 35 (1973), [Sov. Phys. JETP 38, 18 (1974)].
  18. J. Reinhardt, B. Müller, and W. Greiner, Theory of positron production in heavy-ion collisions, Phys. Rev. A 24, 103 (1981).
  19. F. Bosch and B. Müller, Positron creation in heavy-ion collisions, Prog. Part. Nucl. Phys. 16, 195 (1986).
  20. U. Müller-Nehler and G. Soff, Electron excitations in superheavy quasimolecules, Phys. Rep. 246, 101 (1994).
  21. J. Reinhardt and W. Greiner, Supercritical fields and the decay of the vacuum, in Proceeding of the Memorial Symposium for Gerhard Sof, edited by W. Greiner and J. Reinhardt (EP Systema, Budapest, 2005) pp. 181–192.
  22. E. Ackad and M. Horbatsch, Numerical calculation of supercritical Dirac resonance parameters by analytic continuation methods, Phys. Rev. A 75, 022508 (2007a).
  23. S. I. Godunov, B. Machet, and M. I. Vysotsky, Resonances in positron scattering on a supercritical nucleus and spontaneous production of e+⁢e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT pairs, Eur. Phys. J. C 77, 782 (2017).
  24. E. Ackad and M. Horbatsch, Supercritical Dirac resonance parameters from extrapolated analytic continuation methods, Phys. Rev. A 76, 022503 (2007b).
  25. A. Marsman and M. Horbatsch, Calculation of supercritical Dirac resonance parameters for heavy-ion systems from a coupled-differential-equation approach, Phys. Rev. A 84, 032517 (2011).
  26. P. Grashin and K. Sveshnikov, Vacuum polarization energy decline and spontaneous positron emission in QED under coulomb supercriticality, Phys. Rev. D 106, 013003 (2022).
  27. A. Krasnov and K. Sveshnikov, Non-perturbative effects in the QED-vacuum energy exposed to the supercritical Coulomb field, Mod. Phys. Lett. A 37, 2250136 (2022).
  28. E. Ackad and M. Horbatsch, Calculation of electron-positron production in supercritical uranium-uranium collisions near the coulomb barrier, Phys. Rev. A 78, 062711 (2008).
  29. D. N. Voskresensky, Electron-positron vacuum instability in strong electric fields. relativistic semiclassical approach, Universe 7, 104 (2021).
  30. B. Müller and W. Greiner, The two centre Dirac equation, Z. Naturforsch. A 31, 1 (1976).
  31. G. Soff and J. Reinhardt, Positron creation in heavy ion collisions the influence of the magnetic field, Phys. Lett. B 211, 179 (1988).
  32. D. A. Telnov and S.-I. Chu, Ab initio study of the orientation effects in multiphoton ionization and high-order harmonic generation from the ground and excited electronic states of H2+superscriptsubscriptH2\mathrm{H}_{2}^{+}roman_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, Phys. Rev. A 76, 043412 (2007).
  33. D. A. Telnov and S.-I. Chu, Effects of multiple electronic shells on strong-field multiphoton ionization and high-order harmonic generation of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional approach, Phys. Rev. A 80, 043412 (2009).
  34. J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Math. Proc. Cambridge Phil. Soc. 43, 50–67 (1947).
  35. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, 2nd ed. (Pergamon Press, Oxford, 1982).
  36. F. A. Parpia and A. K. Mohanty, Relativistic basis-set calculations for atoms with Fermi nuclei, Phys. Rev. A 46, 3735 (1992).
  37. L. Visscher and K. G. Dyall, Dirac–Fock atomic electronic structure calculations using different nuclear charge distributions, At. Data Nucl. Data Tables 67, 207 (1997).
  38. V. M. Shabaev, I. I. Tupitsyn, and V. A. Yerokhin, Model operator approach to the Lamb shift calculations in relativistic many-electron atoms, Phys. Rev. A 88, 012513 (2013).
  39. I. Angeli and K. Marinova, Table of experimental nuclear ground state charge radii: An update, At. Data Nucl. Data Tables 99, 69 (2013).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.